Answer: Magnesium and Bromine/MgBr2 = Ionic compounds
Explanation: When atoms form together they can form between Ionic Compounds and molecules; this could depend on if they're joined by Covalent bonds as well because when atoms form with Covalent bonds, it forms Molecules.
The sample of argon gas that has the same number of atoms as a 100 milliliter sample of helium gas at 1.0 atm and 300 is 100. mL at 1.0 atm and 300. K
The correct option is D.
<h3>What is the number of moles of gases in the given samples?</h3>
The number of moles of gases in each of the given samples of gas is found below using the ideal gas equation.
The ideal gas equation is: PV/RT = n
where;
- P is pressure
- V is volume
- n is number of moles of gas
- T is temperature of gas
- R is molar gas constant = 0.082 atm.L/mol/K
Moles of gas in the given helium gas sample:
P = 1.0 atm, V = 100 mL or 0.1 L, T = 300 K
n = 1 * 0.1 / 0.082 * 300
n = 0.00406 moles
For the argon gas sample:
A. n = 1 * 0.05 / 0.082 * 300
n = 0.00203 moles
B. n = 0.5 * 0.05 / 0.082 * 300
n = 0.00102 moles
C. n = 0.5 * 0.1 / 0.082 * 300
n = 0.00203 moles
D. n = 1 * 0.1 / 0.082 * 300
n = 0.00406 moles
Learn more about ideal gas equation at: brainly.com/question/24236411
#SPJ1
Explanation:
(a) As the given chemical reaction equation is as follows.

So, when we double the amount of hypochlorite or iodine then the rate of the reaction will also get double. And, this reaction is "first order" with respect to hypochlorite and iodine.
Hence, equation for rate law of reaction will be as follows.
Rate =
(b) Since, the rate equation is as follows.
Rate =
Let us assume that (
)
Putting the given values into the above equation as follows.

K =
=
Hence, the value of rate constant for the given reaction is
.
(c) Now, we will calculate the rate as follows.
Rate =
=
= 
Therefore, rate when
M and
M is
.