When an atom or molecule accepts or looses an electron or electrons it gets either negative charge (when electrons gained) or a positive charge (when looses electron). The negative ion is called Anion and positve ion is called the Cation. An Ion can be Atomic or Polyatomic.
Example:
Sodium when looses one electron forms a cation i.e. Na⁺
Chlorine when gains one electron forms an Anion i.e. Cl⁻
Result:
<span>A negative ion (Anion) differ from an uncharged atom of the same element in the number of electrons. An anion contains more electrons than its corresponding Neutral Element.</span>
I believe the answer is A. Iron
<span>A. biosphere
</span><span>C. geosphere
</span>E. atmosphere
<span>F. hydrosphere
</span>
Earth's oceans absorb carbon dioxide emitted by humans and other animals, and eventually turn it into carbonate rocks. Which "spheres" are part of this<span>process? Select all that apply.
</span>
NOT:
<span>B. exosphere
</span><span>D. cryosphere</span>
Answer:
101.56 of H₂O
Explanation:
The balanced equation for the reaction is given below:
CH₄ + 2O₂ —> CO₂ + 2H₂O
Next, we shall determine the mass of CH₄ that reacted and the mass of H₂O produced from the balanced equation. This is illustrated below:
Molar mass of CH₄ = 12 + (4×1.01)
= 12 + 4.04
= 16.04 g/mol
Mass of CH₄ from the balanced equation = 1 × 16.04 = 16.04 g
Molar mass of H₂O = (2×1.01) + 16
= 2.02 + 16
= 18.02 g/mol
Mass of H₂O from the balanced equation = 2 × 18.02 = 36.04g
SUMMARY:
From the balanced equation above,
16.04 g of CH₄ reacted to produce 36.04 g of H₂O.
Finally, we shall determine the mass of water, H₂O produced by the reaction of 45.2 g of methane, CH₄. This can be obtained as illustrated below:
From the balanced equation above,
16.04 g of CH₄ reacted to produce 36.04 g of H₂O.
Therefore 45.2 g of CH₄ will react to produce = (45.2 × 36.04)/16.04 = 101.56 g of H₂O.
Thus, 101.56 of H₂O were obtained.