Answer:
The concentration is [-1 + sqrt(1+0.11t)]/0.1542 M
Explanation:
Let the concentration of CH3CHO after selected reaction times be y
Rate = Ky^2 = change in concentration of CH3CHO/time
K = 0.0771 M^-1 s^-1
Change in concentration of CH3CHO = 0.358 - y
0.0771y^2 = 0.358-y/t
0.0771ty^2 = 0.358 - y
0.0771ty^2 + y - 0.358 = 0
The value of y must be positive and is obtained in terms of t using the quadratic formula
y = [-1 + sqrt(1^2 -4(0.0771t)(-0.358)]/2(0.0771) = [-1 + sqrt(1+0.11t)]/0.1542 M
Answer:
Electronegativity = 1.87.
Ionic radius = 109 pm.
Atomic radius = -39 pm
First ionization energy = 410 kJ/mol
Explanation:
Hello!
In this case, since electronegativity, ionic radius, atomic radius and first ionization energy are periodic properties that have specific trends, we can summarize it by realizing that oxygen and beryllium belong the same period 2 and differ in group, 6A and 2A respectively.
In such a way, the required comparison is written below:
Electronegativity = 3.44 (oxygen) - 1.57 (beryllium) = 1.87.
Ionic radius = 140 pm (oxygen)- 31 pm (beryllium) = 109.
Atomic radius = 73 pm (oxygen) - 112 pm (beryllium) = -39 pm
First ionization energy = 1310 kJ/mol (oxygen) - 900 kJ/mol (beryllium) = 410 kJ/mol
It means that electronegativity, ionic radius and first ionization energy increases from left to right whereas the atomic radius from right to left.
Best regards!
Answer:
Radiation is energy that comes from a source and travels through space at the speed of light.