Answer:
170 N
Explanation:
Given in the question that, work a bulldozer can do = 4500 J
<h3>
Step 1</h3>
We will use trigonometry identity to find the distance bulldozer will travel up the hill
sin(35) = opp/hypo
sin(35) = 15/hypo
hypo = 15/sin(35)
hypo = 26.15m
<h3>Step 2</h3>
Formula to use
work done = force × distance
Plug values in the above formula
4500 = force x 26.15
force = 4500/26.15
force = 172.08
force ≈ 170 N
<h3 /><h3 /><h3 />
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m
Answer:
0.79 s
Explanation:
We have to calculate the employee acceleration, in order to know the minimum time. According to Newton's second law:

The frictional force is maximum since the employee has to apply a maximum force to spend the minimum time. In y axis the employee's acceleration is zero, so the net force is zero. Recall that 
Now, we find the acceleration:

Finally, using an uniformly accelerated motion formula, we can calculate the minimum time. The employee starts at rest, thus his initial speed is zero:

Answer:
9
Explanation:
2.13 rad/s * 26.9 sec
2.13 * 26.9
57.297
3282.88 deg / 360 deg = 9.12
It makes 9 complete revolutoins
The strong nuclear force holds the nucleus of an atom together.
Somehow, it overcomes the electrical force of repulsion between protons in the nucleus, which all have the same charge but still stay close together somehow. (b)