Answer:
Q = 96.6 j
Explanation:
Given data:
Heat required = ?
Initial temperature = 19°C
Final temperature = 33°C
Mass of disc = 3.0 g
Specific heat capacity = 2.3 J/g.°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 33°C - 19°C
ΔT = 14°C
Q = 3.0 g×2.3 J/g.°C × 14°C
Q = 96.6 j
Exothermic releases energy(heat) from the system to the surrounding
endothermic takes energy (heat) from the surrounding to the system
Answer:
Equilibrium concentration of
is 12.5 M
Explanation:
Given reaction: 
Here, ![K_{c}=\frac{[C_{2}H_{5}OH]}{[C_{2}H_{4}][H_{2}O]}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC_%7B2%7DH_%7B5%7DOH%5D%7D%7B%5BC_%7B2%7DH_%7B4%7D%5D%5BH_%7B2%7DO%5D%7D)
where
represents equilibrium constant in terms of concentration and species inside third bracket represent equilibrium concentrations
Here,
,
and 
So, ![[H_{2}O]=\frac{[C_{2}H_{5}OH]}{[C_{2}H_{4}]\times K_{c}}=\frac{1.69}{0.015\times 9.0}=12.5M](https://tex.z-dn.net/?f=%5BH_%7B2%7DO%5D%3D%5Cfrac%7B%5BC_%7B2%7DH_%7B5%7DOH%5D%7D%7B%5BC_%7B2%7DH_%7B4%7D%5D%5Ctimes%20K_%7Bc%7D%7D%3D%5Cfrac%7B1.69%7D%7B0.015%5Ctimes%209.0%7D%3D12.5M)
Hence equilibrium concentration of
is 12.5 M