Answer:
43.18 gm
Explanation:
Heat of fusion of water at 0° C is 334 j/gm
then you have to heat the water to boiling point (100 C)
specific heat of water is 4.186 j/g-c
x = grams of water
x ( 334 + 4.186 (100) ) = 32500
x = 43.18 gm
Chemical energy is released from the breaking down of glucose.
Answer:
:)
Explanation:
If we subtract the atomic number from the atomic mass: atomic mass - atomic number = number of protons + number of neutrons - number of protons. Thus we get the number of neutrons present in an atom when we subtract the atomic number from the atomic mass.
Answer:
670.68°C
Explanation:
Given that:
volume of water = 50 ml but 1 g = 1 ml. Therefore the mass of water (m) = 50 ml × 1 g / ml = 50 g
specific heat (C) = 4.184 J/g˚C
Initial temperature = 20°C, final temperature = 22°C. Therefore the temperature change ΔT = final temperature - initial temperature = 22 - 20 = 2°C
The quantity of heat (Q) used to raise the temperature of a body is given by the equation:
Q = mCΔT
Substituting values:
Q = 50 g × 4.184 J/g˚C × 2°C = 418.4 J
Since the mass of lead = 5 g and specific heat = 0.129 J/g˚C. The heat used to raise the temperature of water is the same heat used to raise the temperature of lead.
-Q = mCΔT
-418.4 J = 5 g × 0.129 J/g˚C × ΔT
ΔT = -418.4 J / ( 5 g × 0.129 J/g˚C) = -648 .68°C
temperature change ΔT = final temperature - initial temperature
- 648 .68°C = 22°C - Initial Temperature
Initial Temperature = 22 + 648.68 = 670.68°C