Use the formula in terms of half life from the normal exponential functions
<span>
N(t) = N(0) (1/2) ^ (t/thalf) </span>
<span>
N(0) is the original quantity </span>
<span>
N(t) = quantity remaining at time t </span>
<span>
t is the time </span>
<span>
thalf is half life </span>
<span>
1/16 = (1/2)^(t/3.82) </span>
<span>
16 = 2^(t/3.82) </span>
<span>
4 = t/3.82 </span>
<span>
t = 15.28 days
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
They are different by a phase shift of pi/2
In rubidium oxide - Rb₂O , the ions are Rb⁺ and O²⁻
Rb is a group one element with one valence electron. To become stable it loses its outer electron to gain a complete outer shell.
Electronic configuration of Rb is - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 5s¹
Once it loses its valence electron the configuration is;
- 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶
The noble gas with this configuration is Krypton - Kr
Oxygen electron configuration is 1s² 2s² 2p⁴
Once it gains 2 electrons the configuration is - 1s² 2s² 3p⁶
The noble gas with this configuration is Neon - Ne
Answer:
That is extremely confusing. Try contacting your prof.
Explanation: