By definition a cylinder is a solid geometric figure with straight parallel sides and a circular or oval cross-section. A good example of a cylinder would be a soda can.
<h3>
Answer:</h3>
5.6 Liters
<h3>
Explanation:</h3>
- N.T.P. refers to the standard temperature and pressure (S.T.P).
We need to know that;
- One mole of a gas occupies a volume of 22.4 liters at N.T.P.
In this case;
We have 11 g of CO₂
But, 1 mole of CO₂ occupies 22.4 l at N.T.P.
1 mole of CO₂ = 44 g
Therefore;
44 g of CO₂ = 22.4 liters
What about 11 g ?
= (11 g × 22.4 l)÷ 44 g
= 5.6 l
Therefore, 11 g of CO₂ will occupy a volume of 5.6 liters at N.T.P.
Answer:
At the end of meiosis, there are four cells, each with 23 chromosomes, for a total of 92 chromosomes split between the four cells.
Explanation:
During meiosis, a diploid cell (46 chromosomes) replicates its DNA (making 92 chromosomes) then undergoes two cell divisions to generate four haploid cells (23 chromosomes).
These haploid cells are the gametes which, during fertilization, fuse to become a zygote with 46 chromosomes.
Answer:
Explanation:
This is a direct application of the equation for ideal gases.
Where:
- P = pressure = 1.25 atm
- V = volume = 25.2 liter
- R = Universal constant of gases = 0.08206 atm-liter/K-mol
- T = absolute temperature = 25.0ºC = 25 + 273.15 K = 298.15 K
- n = number of moles
Solving for n:
Substituting:

Answer:
n = 6.06 x
mol
Explanation:
n =?
m = 3.06 x 10-³ g
M (H5) = 5 x 1.01 (Since we only want hydrogen)
Atomic mass of C = 12.01
Atomic mass of H is 1,01, etc.
Having this data, we can use the Molar mass formula and change it so we can know the quantity of matter (n) in moles, and we just replace it.
M =
⇔ n =
⇔ n =
⇔ n = 6.06 x
mol
Note: The numbers I've used may be different from yours, by a small difference. I don't know if it's the case, but hope it helped.