Hydrogen bonds are not like covalent bonds. They are nowhere near as strong and you can't think of them in terms of a definite number like a valence. Polar molecules interact with each other and hydrogen bonds are an example of this where the interaction is especially strong. In your example you could represent it like this:
<span>H2C=O---------H-OH </span>
<span>But you should remember that the H2O molecule will be exchanging constantly with others in the solvation shell of the formaldehyde molecule and these in turn will be exchanging with other H2O molecules in the bulk solution. </span>
<span>Formaldehyde in aqueous solution is in equilibrium with its hydrate. </span>
<span>H2C=O + H2O <-----------------> H2C(OH)2</span>
Explanation:
Below is an attachment containing the solution.
Answer:
Option (2) 2
Explanation:
NO3- + 4H+ + Pb → Pb2+ + NO2 + 2H2O
The equation above can be balance as follow:
There are 3 atoms of the left side and a total of 4 atoms on the right side. It can be balance by putting 2 in front NO3- and 2 in front of NO2 as shown below:
2NO3- + 4H+ + Pb → Pb2+ + 2NO2 + 2H2O
Now the equation is balanced.
The coefficient of NO2 is 2