Answer:
From molar mass=total RAM of each individual element
78.8=(16+1)×3+M
78.8-51=M
27.8g/mol=M
Answer:
Yes. The solution would be optically active.
Explanation:
Diastereomer are defined as the image that is non mirror and non -identical. It is made up of two stereoisomers. They are formed when the two stereoisomers or more than two stereoisomers of the compound have the same configuration at the equivalent stereocenters.
In the given context, as the product given is a diastereomeric mixture, the product would have an optical activity in total.
So the answer is Yes.
<span>
</span>

<span>
You have OH- conc = </span>2.3 ✕ 10−6 m
From the formula, you can observe the ratio of Cu2+ to OH- is 4 : 6 = 2:3
So, for 2.3 ✕ 10−6 m OH-
[Cu2+] =

The percentage composition of this compound : 40%Ca, 12%C and 48%O
<h3>Further explanation</h3>
Given
20.0 g of calcium,
6.0 g of carbon,
and 24.0 g of oxygen.
Required
The percentage composition
Solution
Total mass of compound :
=mass calcium + mass carbon + mass oxygen
=20 g + 6 g + 24 g
=50 g
Percentage composition :



A solvent (from the Latin solvō, "I loosen, untie, I solve") is a substance that dissolves a solute (a chemically distinct liquid, solid or gas), resulting in a solution. A solvent is usually a liquid but can also be a solid or a gas. The quantity of solute that can dissolve in a specific volume of solvent varies with temperature. Common uses for organic solvents are in dry cleaning (e.g., tetrachloroethylene), as paint thinners (e.g., toluene, turpentine), as nail polish removers and glue solvents (acetone, methyl acetate, ethyl acetate), in spot removers (e.g., hexane, petrol ether), in detergents (citrus terpenes) and in perfumes (ethanol). Water is a solvent for polar molecules and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within a cell. Solvents find various applications in chemical, pharmaceutical, oil, and gas industries, including in chemical syntheses and purification processes.
source: wikapedia