Answer: 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.
Explanation:
According to the dilution law,

where,
= concentration of stock solution = 12.0 M
= volume of stock solution = ?
= concentration of diluted solution= 6.00 M
= volume of diluted acid solution = 500 ml
Putting in the values we get:


Thus 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.
Answer:
Methods for determining or delivering precise volumes include volumetric pipets and pycnometers; less precise methods include burets, graduated cylinders, and graduated pipets. In this experiment, you will measure masses and volumes to determine density. Four different metal cylinders are investigated.
Explanation:
Answer:
It corresponds to Charles' Law
Explanation:
Charles's Law corresponds to one of the gas laws, where temperature and volume are related, to constant pressure. That is, according to said equation, the volume of a gas varies directly with the temperature, under conditions of constant pressure.
Answer: CO2 and H2O
Explanation: I already took the test it's right
Rutherford performed gold foil experiment to understand that how negative and positive particles could Co exist in an atom. He bombarded alpha particles on a 0.00004 cm thick gold foil.
He proposed a planetary model of the atom and concluded following results and demonstrated that,
1. An atom produces a line spectrum.
2. An Electron revolves around the nucleus without any orbits.
3. Since most of the particles passed through the foil undeflected it means that most of the volume occupied by an atom is empty.
4. An Atom as a whole is neutral.
5. The deflection of few particles on the foil suggested that there is center of positive particles in an atom called the nucleus of the atom.
6. The complete rebounce of few particles on the gold foil suggested that the nucleus is very dense and hard.