Answer:
a)Amplitude ,A = 2 mm
b)f=95.49 Hz
c)V= 30 m/s ( + x direction )
d) λ = 0.31 m
e)Umax= 1.2 m/s
Explanation:
Given that
![y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=y%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
As we know that standard form of wave equation given as

A= Amplitude
ω=Frequency (rad /s)
t=Time
Φ = Phase difference
![y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=y%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
So from above equation we can say that
Amplitude ,A = 2 mm
Frequency ,ω= 600 rad/s (2πf=ω)
ω= 2πf
f= ω /2π
f= 300/π = 95.49 Hz
K= 20 rad/m
So velocity,V
V= ω /K
V= 600 /20 = 30 m/s ( + x direction )
V = f λ
30 = 95.49 x λ
λ = 0.31 m
We know that speed is the rate of displacement

![U=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=U%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
![U=1200\ cos[(20m^{-1})x-(600s^{-1})t]\ mm/s](https://tex.z-dn.net/?f=U%3D1200%5C%20cos%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D%5C%20mm%2Fs)
The maximum velocity
Umax = 1200 mm/s
Umax= 1.2 m/s
The current in the 50 Ω resistor is A) 1.2 A
The statement would be False. T<span>he potential energy of a membrane potential comes solely from the difference in electrical charge across the membrane. In addition to that, membrane potential actually regulates the potential difference of nerve cells across the membrane estimated at 70 mV.</span>
Answer:
85.556metres
Explanation:
Using pythagorean theorem
C²=A²+B²
we have c as the hypotenuse vector A thus:
93.8²=A²+38.4²
93.8²-38.4²=A²
8794.44-1474.56=A²
7319.88=A²
A=85.556
Answer:
The plane would need to travel at least
(
.)
The
runway should be sufficient.
Explanation:
Convert unit of the the take-off velocity of this plane to
:
.
Initial velocity of the plane:
.
Take-off velocity of the plane
.
Let
denote the distance that the plane travelled along the runway. Since acceleration is constant but unknown, make use of the SUVAT equation
.
Notice that this equation does not require the value of acceleration. Rather, this equation make use of the fact that the distance travelled (under constant acceleration) is equal to duration
times average velocity
.
The distance that the plane need to cover would be:
.