To separate off different products in order of their boiling points. You do it by a process of heating and cooling in a horizontal condenser usually.
Answer:
At one atmosphere and twenty-five degrees Celsius, could you turn it into a liquid by cooling it down? Um, and the key here is that the triple point eyes that minus fifty six point six degrees Celsius and it's at five point eleven ATMs. So at one atmospheric pressure, there's no way that you're ever going to reach the liquid days. So the first part of this question is the answer The answer to the first part of a question is no. How could you instead make the liquid at twenty-five degrees Celsius? Well, the critical point is at thirty-one point one degrees Celsius. So you know, if you're twenty-five, if you increase the pressure instead, you will briefly by it, be able to form a liquid. And if you continue Teo, you know, increase the pressure eventually form a salad, so increasing the pressure is the second part. If you increase the pressure of co two thirty-seven degrees Celsius, will you ever liquefy? No. Because then, if you're above thirty-one point one degrees Celsius in temperature. You'LL never be able to actually form the liquid. Instead, you'LL only is able Teo obtain supercritical co too, which is really cool thing. You know, they used supercritical sio tu tio decaffeinated coffee without, you know, adding a solvent that you'LL be able to taste, which is really cool. But no, you can't liquefy so two above thirty-one degrees Celsius or below five-point eleven atmospheric pressures anyway, that's how I answer this question. Hope this helped :)
When a solvent has as much of the dilute dissolved in it as possible, then it is saturated.
If you were to heat the water, its capacity would increase and would then be super-saturated because it has more dissolved in it than possible as room temp.
Since there is no heating being done, the water is just saturated.
Hope that helps!
Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.