Answer:
A. N₂(g) + 3H₂(g) -----> 2NH₃ exothermic
B. S(g) + O₂(g) --------> SO₂(g) exothermic
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) endothermic
D. 2F(g) ---------> F₂(g) exothermic
Explanation:
The question says predict not calculate. So you have to use your chemistry knowledge, experience and intuition.
A. N₂(g) + 3H₂(g) -----> 2NH₃ is exothermic because the Haber process gives out energy
B. S(g) + O₂(g) --------> SO₂(g) is exothermic because it is a combustion. The majority, if not all, combustion give out energy.
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) is endothermic because it is the reverse reaction of the combustion of hydrogen. If the reverse reaction is exothermic then the forward reaction is endothermic
D. 2F(g) ---------> F₂(g) is exothermic because the backward reaction is endothermic. Atomisation is always an endothermic reaction so the forward reaction is exothermic
Empirical formula: The formula consist of proportions of the elements which is present in the compound or the simplest whole number ratios of atoms.
Now, molecular formula is equal to the product of n (ratio) and empirical formula.
Molecular formula =
(1)
molecular formula =
(given)
Since, 6 is the smallest subscript in above molecular formula to get the simpler whole number of atoms. Therefore, divide all the subscripts i.e. number of carbon atoms (12), number of hydrogen atoms (24) and number of oxygen atoms (6) by 6.
empirical formula becomes 
Thus, according to the formula (1)
Hence, empirical formula of given molecular formula is 
Answer:
I think
1. A
2. 400
3. 100
4. IDK srry
Explanation:
Ijust want to help, but I also want brainliest
Answer:
0.84 moles of oxygen are required.
Explanation:
Given data:
Mass of CO₂ produced = 37.15 g
Number of moles of oxygen = ?
Solution:
Chemical equation:
C + O₂ → CO₂
Number of moles of CO₂:
Number of moles = mass/molar mass
Number of moles = 37.15 g/ 44 g/mol
Number of moles = 0.84 mol
Now we will compare the moles of oxygen and carbon dioxide.
CO₂ : O₂
1 : 1
0.84 : 0.84
0.84 moles of oxygen are required.