Answer:
<em>The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.</em>
<em></em>
Explanation:
At first, the magnet fall towards the coils; inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.
This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.
Answer:
The child represented by a star on the outside path.
Explanation:
Answer:
A.2.95 m
B.7
Explanation:
We are given that
Diffraction grating=600 lines/mm
d=
Wavelength of light,
l=4.6 m
A.We have to find the distance between the two m=1 bright fringes

For first bright fringe, =1


The distance between two m=1 fringes

Hence, the distance between two m=1 fringes=2.95 m
B.For maximum number of fringes,


Substitute the values


Maximum number of bright fringes on the scree=
The basketball would be sun then baseball earth and finally golf ball moon.