Positive charge=proton
Negative charge=electron
No charge/neutral=neutron
Answer:
22.505 seconds
Explanation:
V =19.8m/s
V = a*to
t1 = 19.8/3.3
= 6seconds
Distance travelled during acceleration
= 1/2 x 3.3 x 6²
= 59.4m
X_total = x1 + x2
X2 = 373-59.4
X2 = 313.6m
t2 = x2/v
= 313.6/19.8
= 16.505
Total = 16.505 + 6
= 22.505 seconds
the minimum time in which an elevator can travel the 373 m from the ground floor is 22.505 seconds.
' C ' is the only correct statement on the list. We don't know anything about diagram-x or diagram-y because we can't see them.
Answer:
12.5 m/s
Explanation:
The motion of the hammer is a free fall motion, so a uniformly accelerated motion, therefore we can use the following suvat equation:

Where, taking downward as positive direction, we have:
s = 8 m is the displacement of the hammer
u = 0 is the initial velocity (it is dropped from rest)
v is the final velocity
is the acceleration of gravity
Solving the equation for v, we find the final velocity:

So, the final speed is 12.5 m/s.
Answer:

Explanation:
The change in kinetic energy will be simply the difference between the final and initial kinetic energies: 
We know that the formula for the kinetic energy for an object is:

where <em>m </em>is the mass of the object and <em>v</em> its velocity.
For our case then we have:

Which for our values is:
