Answer:-
Alpha decay
Explanation:-
Uranium 238 has atomic number 92 and mass number 238.
Thorium 234 has atomic number 90 and mass number 234.
So, the change in atomic number as uranium 238 disintegrates into thorium234 = 92 – 90 = 2
So, the change in mass number as uranium 238 disintegrates into thorium234= 238 – 234 = 4
We know that when an alpha particle is emitted, the mass number decreases by 4 and the atomic number decreases by 2.
So when an atom of uranium 238 undergoes radioactive decay to form an atom of thorium-234, alpha decay has occurred.
Answer:
A is the correct answer.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
For example in case of Helium:
The 1st one diagram shows that arrow is pointing with in nucleus. The helium nucleus contain two protons and two neutrons. Thus maximum mass is present with in nucleus. while two electrons are revolve around the nucleus and mass of electron is negligible.
Answer:
20619.4793 years
Explanation:
The half life of carbon-14 = 5730 years
The formula for the half life for a first order kinetic reaction is:
Where,
is the half life
k is the rate constant.
Thus rate constant is:
5730 years=ln(2)/k
k = 1.21×10⁻⁴ years ⁻¹
Using integrated rate law as:

Where,
is the concentration at time t
is the initial concentration
Given that the final concentration contains 8.25 % of the original quantity which means that:

So,
ln(.0825)= -1.21×10⁻⁴×t
<u>
t = 20619.4793 years</u>
<u></u>
No because 2 pounds only equals 16 ounces times 2 so it equals 32 ounces which is not bigger than 80
Answer:
M = 3.69 M.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the molar concentration of the 1.29 moles of KCl in 350 mL of solution by recalling the mathematical definition of molarity as the division of the moles by the volume in liters, in this case 0.350 L; thus, we proceed as follows:

Which gives molar units, M, or just mol/L.
Regards!