If a gas has an initial pressure of 24,650 pa and an initial volume of 376 ml, then the final volume would be 11,943.8144 ml if the pressure of the gas is changed to 775 torr assuming that the amount and the temperature of the gas remain constant.
It is given that the initial pressure P₁ is 24,650Pa and initial volumeV₁ is 376ml and the final pressureP₂ is 775 torr. We need to find the final volume of the gas. The final volume could be found using the following formula:
P₁V₁ = P₂V₂
By substituting the values, we get
24650 x 376 = 776 x V₂
9268400 = 776V₂
V₂ = 9268400/776
V₂ = 11,943.8144 ml
Therefore, the final volume of the gas would be 11,943.8144 ml
To know more about Partial pressure, click below:
brainly.com/question/14119417
#SPJ4
Answer:
d = 0.98 g/L
Explanation:
Given data:
Density of acetylene = ?
Pressure = 0.910 atm
Temperature = 20°C (20+273 = 293 K)
Solution:
Formula:
PM = dRT
R = general gas constant = 0.0821 atm.L/mol.K
M = molecular mass = 26.04 g/mol
0.910 atm × 26.04 g/mol = d × 0.0821 atm.L/mol.K×293 K
23.7 atm.g/mol = d × 24.1 atm.L/mol
d = 23.7 atm.g/mol / 24.1 atm.L/mol
d = 0.98 g/L
Answer:
5
Explanation:
Given parameters:
Hydrogen ion concentration = 0.00001M
Unknown:
pH of the solution =?
Solution:
The pH is used to estimate the degree of acidity or alkalinity of a solution. To solve for pH of any solution, we use the expression below;
pH = -log [H⁺]
[H⁺] is the hydrogen ion concentration
pH = -log (1 x 10⁻⁵)
pH = -(-5) = 5
Answer:One carbon atom forms a double bond with an oxygen atom and two single bonds with two hydrogen atoms
Explanation: