Answer:
They mask the recessive alleles
Answer: -
3.3° C
Explanation: -
Mass of water m = 180.5 g
Energy released as heat Q = 2494 J
Specific heat is defined as the heat required to raise the temperature of the unit mass of a given substance by 1 C.
Specific heat of water Cp = 4.184 (J/g)⋅∘C
Using the formula
Q = m x Cp x ΔT
We get temperature change ΔT = Q / (m x Cp)
= 2494 J / ( 180.5 g x 4.184 (J/g)⋅∘C
= 3.3° C
Thus the temprature change, (ΔT), of the wateris 3.3 °C if 180.5 g of water sat in the copper pipe from part A, releasing 2494 J of energy to the pipe
The pressure of the carbon dioxide will be 0.09079 atm.
<h3>What is partial pressure?</h3>
The pressure exerted by the individual gas is known as partial pressure.
The partial pressure is given as

In a mixture of carbon dioxide and oxygen, 40.0% of the gas pressure is exerted by oxygen.
If the total pressure is 115 mmHg.
The total pressure in atm will be
P = 115 mmHg
P = 0.15132 atm
We have

Then the pressure of the carbon dioxide will be 0.09079 atm.
More about the partial pressure link is given below.
brainly.com/question/13199169
#SPJ1
<u>Given:</u>
Initial amount of carbon, A₀ = 16 g
Decay model = 16exp(-0.000121t)
t = 90769076 years
<u>To determine:</u>
the amount of C-14 after 90769076 years
<u>Explanation:</u>
The radioactive decay model can be expressed as:
A = A₀exp(-kt)
where A = concentration of the radioactive species after time t
A₀ = initial concentration
k = decay constant
Based on the given data :
A = 16 * exp(-0.000121*90769076) = 16(0) = 0
Ans: Based on the decay model there will be no C-14 left after 90769076 years