Answer:
Density, d = 1.779 g/cm³
Explanation:
The density of a material is given by its mass per unit volume.
Here, height of a piece of magnesium cylinder, h = 5.62 cm
Its diameter, d = 1.34 cm
Radius = 0.67 cm
Volume of he cylinder,


So, the density of the sample is 1.779 g/cm³.
Answer:
0.17 moles
Explanation:
In the elements of the periodic table, the atomic mass = molar mass. <u>Ex:</u> Atomic mass of Carbon is 12.01 amu which means molar mass of Carbon is also 12.01g/mol.
In order to find the # of moles in a 12 g sample of NiC-12, we will need to multiply the number of each atom by its molar mass and then add the masses of both Nickel and C-12 found in the periodic table:
- Molar Mass of Ni (Nickel): 58.69 g/mol
- Molar Mass of C (Carbon): 12.01 g/mol
Since there's just one atom of both Carbon and Nickel, we just add up the masses to find the molar mass of the whole compound of NiC-12.
- 58.69 g/mol of Nickel + 12.01 g/mol of Carbon = 70.7 g/mol of NiC-12
There's 12g of NiC-12, which is less than the molar mass of NiC-12, so the number of moles should be less than 1. In order to find the # of moles in NiC-12, we need to do some dimensional analysis:
- 12g NiC-12 (1 mol of NiC-12/70.7g NiC-12) = 0.17 mol of NiC-12
- The grams cancel, leaving us with moles of NiC-12, so the answer is 0.17 moles of NiC-12 in a 12 g sample.
<em>P.S. C-12 or C12 just means that the Carbon atom has an atomic mass of 12amu and a molar mass of 12g/mol, or just regular carbon.</em>
Answer:
- The chemical reaction is not balanced. There is two oxygens on the reactant's side while there's only one oxygen on the products side.
- I would not say it's following the law of conservation of mass as it's not a balanced equation.
- To balance this equation, you would need to add the coefficient of '2' to Magnesium (Mg) on the reactants side, and add the coefficient of '2' to the products side. This would make it so that there's 2 Mg's and 2 O's on both the reactant's side and products side.
edit: I hope this helped you in some way. ^^