Ummm did you try to add or subtract and multiply or divide that can get your answer
Answer:
a) Tբ = 151.8°C
b) ΔV = - 0.194 m³
c) The T-V diagram is sketched in the image attached.
Explanation:
Using steam tables,
At the given pressure of 0.5 MPa, the saturation temperature is the final temperature.
Right from the steam tables (A-5) with a little interpolation, Tբ = 151.793°C
b) The volume change
Using data from A-5 and A-6 of the steam tables,
The volume change will be calculated from the mass (0.58 kg), the initial specific volume (αᵢ) and the final specific volume
(αբ) (which is calculated from the final quality and the consituents of the specific volumes).
ΔV = m(αբ - αᵢ)
αբ = αₗ + q(αₗᵥ) = αₗ + q (αᵥ - αₗ)
q = 0.5, αₗ = 0.00109 m³/kg, αᵥ = 0.3748 m³/kg
αբ = 0.00109 + 0.5(0.3748 - 0.00109)
αբ = 0.187945 m³/kg
αᵢ = 0.5226 m³/kg
ΔV = 0.58 (0.187945 - 0.5226) = - 0.194 m³
c) The T-V diagram is sketched in the image attached
Answer:
It will be B
Explanation:
Since resisitors in series are added together, 1 + 1 + 1 would = 3kilo ohms. But with resistors in parallel would be (1/1+1/1)^-1. That would equal 0.5 Now you have two resistors in series for B, and because now that they are in series you add them together, so 0.5 + 1 = 1.5 kilo ohms which is what is needed.
Answer:
a) 23.89 < -25.84 Ω
b) 31.38 < 25.84 A
c) 0.9323 leading
Explanation:
A) Calculate the load Impedance
current on load side = 0.75 p.u
power factor angle = 25.84
= 0.75 < 25.84°
attached below is the remaining part of the solution
<u>B) Find the input current on the primary side in real units </u>
load current in primary = 31.38 < 25.84 A
<u>C) find the input power factor </u>
power factor = 0.9323 leading
<em></em>
<em>attached below is the detailed solution </em>