All solutions are mixtures of two or more substances, but unless the mixture has a homogeneous distribution of solutes in the solvent, then the mixture is not a solution. Therefore, all mixtures are not solutions.
Molality= mol/ Kg
if we assume that we have 1 kg of water, we have 3.19 moles of solute.
the formula for mole fraction --> mole fraction= mol of solule/ mol of solution
1) if we have 1 kg of water which is same as 1000 grams of water.
2) we need to convert grams to moles using the molar mass of water
molar mass of H₂O= (2 x 1.01) + 16.0 = 18.02 g/mol
1000 g (1 mol/ 18.02 grams)= 55.5 mol
3) mole of solution= 55.5 moles + 3.19 moles= 58.7 moles of solution
4) mole fraction= 3.19 / 58.7= 0.0543
Answer:
<h2>The answer is 7.14 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of metal = 25 g
volume = final volume of water - initial volume of water
volume = 28.5 - 25 = 3.5 mL
It's density is

We have the final answer as
<h3>7.14 g/mL</h3>
Hope this helps you
4
N
a
+
O
2
→
2
N
a
2
O
.
By the stoichiometry of this reaction if 5 mol natrium react, then 2.5 mol
N
a
2
O
should result.
Explanation:
The molecular mass of natrium oxide is
61.98
g
⋅
m
o
l
−
1
. If
5
m
o
l
natrium react, then
5
2
m
o
l
×
61.98
g
⋅
m
o
l
−
1
=
154.95
g
natrium oxide should result.
So what have I done here? First, I had a balanced chemical equation (this is the important step; is it balanced?). Then I used the stoichiometry to get the molar quantity of product, and converted this molar quantity to mass. If this is not clear, I am willing to have another go
1.3 x 10^21 atoms Na is 4.63230769231 mol Na
4.63230769231 mol Na * 23g/mol Na = 106.543076923g