The balanced chemical equation would be as follows:
<span>K2PtCl4(aq) + 2NH3(aq) --> Pt(NH3)2Cl2(s) + 2KCl(aq)
We are given the amount of </span>K2PtCl4 to be used in the reaction. This will be the starting point for our calculations. We do as follows:
65 g K2PtCl4 ( 1 mol / 415.09 g ) ( 1 mol Pt(NH3)2Cl2 / 1 mol K2PtCl ) ( 300.051 g / 1 mol ) = 46.99 g Pt(NH3)2Cl produced
Answer:
Higher frequency
Explanation:
We can imagine a chemical bond between two atoms as if it were two balls connected by a spring.
According to Hooke's Law, the stretching frequency f is

where µ is the reduced mass of the system

The strength of the bond is analogous to k, the force constant of the spring. Then,

Thus, the stronger the bond, the greater the frequency of vibration.
Answer:

How does a balanced chemical equation verify the law of conservation of matter?

According to the Law conservation of matter
Mass can neither be created nor destroyed in a chemical reaction. That is, the total mass of the elements present in the products of a chemical reaction has to be equal to the total mass of the elements present in the reactants. In other words, the number of atoms of each element remains the same, before and after a chemical reaction. Hence, we need to balance the skeletal chemical equation.

Answer:
discord got u tho. Go on discord.
Explanation:
Hi there!
The answer would be D. Forming or breaking bonds.
When forming or breaking bonds, a new substance is created and it’s no longer just a physical change. Sometimes when bonds are breaking and new ones are forming there can be a change in composition.
Hope this helps !