Answer:
The weight of the plane is (mass) x (acceleration of gravity).
Neither of these changes when the plane rises from the ground.
Its weight on the ground is equal to (the same as) its weight in the air.
To determine the time, we can simply do dimensional analysis from the given values. We are given the distance the fluid travels per sec and we are given the required distance to travel. Therefore, we simply divide the required distance with the rate given. It is important to take note with the units.
t = .01 m / .001 m/s = 10 s
Answer:
Average atomic mass of the vanadium = 50.9415 amu
Isotope (I) of vanadium' s abundance = 99.75 %= 0.9975
Atomic mass of Isotope (I) of vanadium ,m= 50.9440 amu
Isotope (II) of vanadium' s abundance =(100%- 99.75 %) = 0.25 % = 0.0025
Atomic mass of Isotope (II) of vanadium ,m' = ?
Average atomic mass of vanadium =
m × abundance of isotope(I) + m' × abundance of isotope (II)
50.9415 amu =50.9440 amu× 0.9975 + m' × 0.0025
m'= 49.944 amu
Explanation:
The answer would be About 3.857yd3