Answer:
Molarity of NaOH = 1.8 M.
Explanation:
From the question given above, the following data were obtained:
Mass of NaOH = 36 g
Molar mass of NaOH = 40 g/mol
Volume = 500 mL
Molarity of NaOH =?
Next, we shall determine the number of mole in 36 g of NaOH. This can be obtained as follow:
Mass of NaOH = 36 g
Molar mass of NaOH = 40 g/mol
Mole of NaOH =?
Mole = mass / molar mass
Mole of NaOH = 36 / 40
Mole of NaOH = 0.9 mole
Next, we shall convert 500 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
500 mL = 500 mL × 1 L / 1000 mL
500 mL = 0.5 L
Finally, we shall determine the molarity of NaOH. This can be obtained as follow:
Mole of NaOH = 0.9 mole
Volume = 0.5 L
Molarity of NaOH =?
Molarity = mole / Volume
Molarity of NaOH = 0.9 / 0.5
Molarity of NaOH = 1.8 M
If it is cooled the motion of the particles decreases as they lose energy.
Answer with Explanation:
"Mass" and "weight" should never be used interchangeably with each other. Mass refers to the <u>total amount of matter</u><u> that can be measured in an object, </u>while weight refers to the<u> measure of the</u><u> force of gravity</u><u> that is acting on the object's mass.</u>
The mass of an object is<u> constant</u> (meaning, it doesn't change even if the object will be placed on another location) while the weight of an object relies on the <em>force of gravity.</em> So, this means that your mass on Earth and on the moon are identical, however, your weight on Earth and on the Moon are different. You will weigh lesser on the Moon because it has a lesser surface gravity than that of Earth.
So, this explains the answer.
The masses of the nucleus and the electron cloud of an atom is balanced if false. Do you have any answer options??
Mass = number of mol x molar mass
Mass = 0.28mol x 55.8g/mol
Mass = 15.624g