Hi there!
We can use the work-energy theorem to solve.
Recall that:

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

Now, we can define work:

Now, plug in the values:

Solve for theta:

75000 lol enjoy..............using up 20 characters
Answer:
Approximately
(assuming that external forces on the cannon are negligible.)
Explanation:
If an object of mass
is moving at a velocity of
, the momentum
of that object would be
.
Momentum of the t-shirt:
.
If there is no external force (gravity, friction, etc.) on this cannon, the total momentum of this system should be conserved. In other words, if
denote the momentum of this cannon:
.
.
Rewrite
to obtain
. Since the mass of this cannon is
, the velocity of this cannon would be:
.
1. earth
2. solar system
3. milky way galaxy
4. local group of galaxies
5. universe
Answer:
Circle
Explanation:
When a charged particle is in motion in a region with magnetic field, the particle experiences a force whose magnitude is given by

where
q is the charge
v is the velocity of the particle
B is the strength of the magnetic field
is the angle between the directions of v and B
In this problem, the velocity of the particle is perpendicular to the magnetic field, so

and the formula reduces to

Also, the direction of this force is perpendicular to the direction of motion of the particle. This means that as the charge moves in the region of the magnetic field, the force acting on it acts as a centripetal force: therefore, the particle will start moving by unifom circular motion, with constant speed (because the magnetic force does no work on the particle, since it is perpendicular to the direction of motion).
So, the path of the particle will be a circle.