Answer:
Calcium would displace barium.
Explanation:
Ba(NO₃)₂ + Ca --> Ca(NO₃)₂ + Ba
There are two types of compounds: molecular/covalent and ionic.
Molecular/covalent compounds are non-metal + non-metal.
Ionic compounds are metal + non-metal.
Looking at the periodic table, barium is a metal. Calcium is also a metal.
Checking a polyatomic ions chart would tell you NO₃⁻ is a non-metal because it has a negative charge.
Since there is no metal + metal compound, the calcium metal would displace barium. The compound remains ionic.
1. D)
2. I think the correct answer from the choices listed above is option C. The tools that <span>should
be used to record the most complete data about a gas are a manometer
and a thermometer. Pressure and temperature are important measurements
for a gas since from these data we can calculate any other properties of
the gas.</span>
Answer:
C₄H₁₀(g) + O₂(g) ⇒ CO₂(g) + H₂O(g)
2 C₄H₁₀(g) + 13 O₂(g) ⇒ 8 CO₂(g) + 10 H₂O(g)
Explanation:
Butane gas (C₄H₁₀) burns in oxygen gas to produce carbon dioxide gas and water vapor. The unbalanced equation is:
C₄H₁₀(g) + O₂(g) ⇒ CO₂(g) + H₂O(g)
First, we will balance carbon and hydrogen which are in just one compound on each side.
C₄H₁₀(g) + O₂(g) ⇒ 4 CO₂(g) + 5 H₂O(g)
Finally, we will balance the oxygen atoms.
C₄H₁₀(g) + 6.5 O₂(g) ⇒ 4 CO₂(g) + 5 H₂O(g)
In order to have integers, we will multiply everý compound by 2.
2 C₄H₁₀(g) + 13 O₂(g) ⇒ 8 CO₂(g) + 10 H₂O(g)
To solve this problem, we must be given first the density
of air at 20 degrees Celsius. Looking up online, this is equal to:
density air (20C) = 0.0012041 g/mL
so that the volume is:
volume balloon = 0.57 g / (0.0012041
g/mL)
<span>volume balloon = 473.38 mL</span>