To solve this problem we will apply the definition of the ideal gas equation, where we will clear the density variable. In turn, the specific volume is the inverse of the density, so once the first term has been completed, we will simply proceed to divide it by 1. According to the definition of 1 atmosphere, this is equivalent in the English system to

The ideal gas equation said us that,
PV = nRT
Here,
P = pressure
V = Volume
R = Gas ideal constant
T = Temperature
n = Amount of substance (at this case the mass)
Then

The amount of substance per volume is the density, then

Replacing with our values,


Finally the specific volume would be


Answer:
Explanation:
Given
Length of rope 
Weight of rope 
weight density
Work done to lift rope 33 m


![W=73.45\left [ \left ( \frac{h^2}{2}\right )\right ]^{33}_0](https://tex.z-dn.net/?f=W%3D73.45%5Cleft%20%5B%20%5Cleft%20%28%20%5Cfrac%7Bh%5E2%7D%7B2%7D%5Cright%20%29%5Cright%20%5D%5E%7B33%7D_0)
The process of formation of a reddish-brown substance on the surface of the iron objects in the presence of flaky moisture and air is called rusting.
Answer:
The net force is zero.
Explanation:
Two opposing and equal forces cancel each other out, giving you a net force of zero.
Answer:
115 kPa
Explanation:
Use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Assuming no elevation change, h₁ = h₂.
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
Plugging in values:
(582,000 Pa) + ½ (1000 kg/m³) (1.28 m/s)² = P + ½ (1000 kg/m³) (30.6 m/s)²
P = 115,000 Pa
P = 115 kPa