Answer:
Explanation:
4√((40(4046)) = 1,609.17370... = 1609 m
B. It’s the same roughly at all latitudes
Answer:
0.1 s
Explanation:
The net force on the log is F - f = ma where F = force due to winch = 2850 N, f = kinetic frictional force = μmg where μ = coefficient of kinetic friction between log and ground = 0.45, m = mass of log = 300 kg and g = acceleration due to gravity = 9.8 m/s² and a = acceleration of log
So F - f = ma
F - μmg = ma
F/m - μg = a
So, substituting the values of the variables into the equation, we have
a = F/m - μg
a = 2850 N/300 kg - 0.45 × 9.8 m/s²
a = 9.5 m/s² - 4.41 m/s²
a = 5.09 m/s²
Since acceleration, a = (v - u)/t where u = initial velocity of log = 0 m/s (since it was a rest before being pulled out of the ditch), v = final velocity of log = 0.5 m/s and t = time taken for the log to reach a speed of 0.5 m/s.
So, making t subject of the formula, we have
t = (v - u)/a
substituting the values of the variables into the equation, we have
t = (v - u)/a
t = (0.5 m/s - 0 m/s)/5.09 m/s²
t = 0.5 m/s ÷ 5.09 m/s²
t = 0.098 s
t ≅ 0.1 s
Answer:
The total electrical power we are using is: 1316 W.
Explanation:
Using the ohm´s law
and the formula for calculate the electrical power, we can find the total electrical power that we are using. First we need to find each electrical power that is using every single component, so the radio power is:
, so the radio power is:
, then we find the pop-corn machine power as:
and finally there are three light bulbs of 110(W) so: P=3*110(W)=330(W) and the total electrical power is the adding up every single power so that: P=330(W)+770(W)+216(W)=1316(W).
Answer:
Explanation:
Force is the change in momentum over time
F = Δp/Δt
1. Calculate the change in momentum
p₁ = mv₁ = 1000 kg × 10 m/s = 10 000 kg·m·s⁻¹
p₂ = 0
Δp = p₂ - p₁= (0 - 10 000) kg·m·s⁻¹ = -10 000 kg·m·s⁻¹
2. Calculate the force
