1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksano4ka [1.4K]
3 years ago
13

When we look into the sky every day we get to see the results of all the behaviors of waves. The blue color of the sky results f

rom the scattering of sunlight by the air molecules. The blue light has a frequency of about 7.5 X 10^14 Hertz. What is the wavelength (nm) of this radiation
Physics
1 answer:
mr_godi [17]3 years ago
4 0

Answer:

λ = 0.4 x 10⁻⁶ m = 400 nm

Explanation:

The relationship between frequency, wavelength and speed of an electromagnetic wave is given as follows:

c = f\lambda

where,

c = speed of light = 3 x 10⁸ m/s

f = frequency of the light wave = 7.5 x 10¹⁴ Hz

λ = wavelength of the light = ?

Therefore,

3\ x\ 10^8\ m/s = (7.5\ x\ 10^{14}\ Hz)\lambda\\\\\lambda = \frac{3\ x\ 10^8\ m/s}{7.5\ x\ 10^{14}\ Hz}

<u>λ = 0.4 x 10⁻⁶ m = 400 nm</u>

You might be interested in
Consider two identical objects of mass m = 0.250 kg and charge q = 4.00 μC. The first charge is held in place at the origin of a
Gnom [1K]

Answer:

a = 640 m/s²

Explanation:

From work-kinetic energy principles,

The net force acting on the second object is the gravitational force and the electric force due to the first object.

So, the gravitational force on the mass is F₁ = Gm₁m₂/r² since m₁ = m₂ = m, U = -Gm²/r²

Also, the electric force on the charge is F₂ = kq₁q₂/r² since q₁ = q₂ = q, U = kq²/r²

The net Force F = ma

So, -F₁ + F₂ = F     (F₁ is negative since it is an attractive force in the negative x -direction and F₂ is positive since it is a repulsive force in the positive x- direction)

-Gm²/r² + kq²/r² = ma

ma = -Gm²/r² + kq²/r²

a = (-Gm²/r² + kq²/r²)/m

a = (-G + kq²/m²)m/r²

Since m = 0.250 kg, q = 4.00 μC = 4.00 × 10⁻⁶ C, r = 3.00 cm = 3.00 × 10⁻² m, G = 6.67 × 10⁻¹¹ Nm²/kg², k = 9 × 10⁹ Nm²/C² and a = acceleration of second mass.

Substituting the variables into the equation, we have

a = (m/r²)(-G + k(q/m)²)]

a = (0.250 kg/{3.00 × 10⁻² m}²)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(4.00 × 10⁻⁶ C/0.250 kg)²)

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(16 × 10⁻⁶ C/kg)²)]

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(256 × 10⁻¹² C²/kg²)]

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 2304 × 10⁻³ Nm²/kg²  ]

a = (0.250 kg/9.00 × 10⁻⁴ m)(2.304 Nm²/kg²)

a = 0.576 Nm²/kg /9.00 × 10⁻⁴ m²

a = 0.064 × 10⁴N/kg

a = 64 × 10 N/kg)

a = 640 m/s²

8 0
3 years ago
Which is an example of something heated by conduction?
babunello [35]

Answer:

A waffle iron heated by coils

Explanation:

A waffle iron heated by coils - conduction

Food heated in a microwave oven - radiation

Pavement heated by the sun - radiation

A room heated by moving air - convection

5 0
3 years ago
Read 2 more answers
What is the magnitude of the electric field at a point midway between a −5.0μC and a +5.8μC charge 8.4cm apart? Assume no other
Alex73 [517]

Answer:

Electric Field = E = 36.848 N/C

Explanation:

In accordance with Columb's law

E = k Q1 Q2 / r.r = 8.99 x 10^9 x 5.0 x 10^-6 x 5.8 x 10^-6 / 0.084 x 0.084

= 36948.6961 x 10^-3 = 36.848 N/C

4 0
3 years ago
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
4 years ago
Convert 8 light years to Astronomical Units
marusya05 [52]

Answer:

505929 AU

Explanation:

As you may know, one light-year is equivalent to approximately 63241.1 Astronomical Units. To get your answer, simply multiply 63241.1 * 8 to get ≈505929 AU

5 0
3 years ago
Other questions:
  • Which statement BEST explains why the specific heat of water is higher than the specific heat of most other substances? A) Due t
    5·1 answer
  • IF it possible for an object to move for 10 seconds at a high speed and end up with an average velocity of zero? true or false
    5·2 answers
  • Calculate the impulse imparted when a 3,000-kg car hits a wall at 60 . m/s and comes to a stop.
    6·1 answer
  • 1. The first stage of stellar formation is the assembly (or formation) of a_______ . 2. Stars form in clouds. 3. When a cloud co
    9·1 answer
  • Arrange the temperatures 40 ºF, 40 ºC, and 40 K from highest to lowest.
    11·2 answers
  • Some scientists believe that:
    7·2 answers
  • Which is an example of a wedge?<br> A.<br> B<br> C<br> D
    13·2 answers
  • A racquetball with a mass of 42 g is moving with a horizontal speed of 7 m/s to the right (+x direction). It hits the wall of th
    10·1 answer
  • Calculate the pressure of water in a will if the deep of the water is 10 m​
    12·1 answer
  • What is the strength of the intermolecular forces between liquid and gas <br>​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!