This is not as simple as it looks.
His average speed is NOT (10km/hr + 50km/hr)/2 = 30 km/hr.
You have to use the definition of speed:
Speed = (total distance covered) / (time to cover the distance).
Let's say the distance up (and down) the hill is 'd' .
Then the time it takes to go up the hill is (d/10) hours.
And the time it takes to come down the hill is (d/50) hours.
Total distance = 2d km
Total time = (d/10) + (d/50) = (5d/50) + (d/50) = 6d/50
Speed = distance/time = 2d/(6d/50) = 100d/6d
<em>Speed = </em>100/6 = <em>16-2/3 km/hr</em>
Answer:
Fossil fuels release carbon dioxide into the atmosphere. Natural gas is the best fossil fuel in terms of energy output per unit of carbon dioxide emitted. Biomass is renewable because a new crop can be grown after each harvest, and biomass is a low carbon fuel. Biomass has the approximate chemical formula CHO.
Explanation:
Answer:
hydrogen bridge
Explanation:
Joule's relationship to heat and temperature is true for all materials where we assume that interatomic forces are linear, when atoms separate these forces decrease. There is a point where the separation between atoms is enough that thermal agitation can separate the molecules and there is a change of state, generally from solid to liquid and from liquid to vapor. When these changes of state are occurring all the energy supplied is used to break the links, so the temperature does not change.
In the specific case of water, there is a bond called a hydrogen bridge that breaks around 4ºC, therefore, at this temperature there is a deviation from the curve since this link is being broken, this does not lead to a change of macroscopic state.
For the other temperatures the water behaves like the other bodies.
This year is 60 years since I learned this stuff, and one of the things I always remembered is the formula for the distance a dropped object falls:
D = 1/2 A T²
Distance = (1/2) (acceleration) (time²)
The reason I never forgot it is because it's SO useful SO often. You really should memorize it. And don't bury it too deep in your toolbox ... you'll be needing it again very soon. (In fact, if you had learned it the first time you saw it, you could have solved this problem on your own today.)
The problem doesn't tell us what planet this is happening on, so let's make it easy and just assume it's on Earth. Then the 'acceleration' is Earth gravity, and that's 9.8 m/s² .
In 5 seconds:
D = 1/2 A T²
D = (1/2) (9.8 m/s²) (5 sec)²
D = (4.9 m/s²) (25 sec²)
D = 122.5 meters
In 6 seconds:
D = 1/2 A T²
D = (1/2) (9.8 m/s²) (6 sec)²
D = (4.9 m/s²) (36 sec²)
D = 176 meters