Answer:
1.933 KN-M
Explanation:
<u>Determine the largest permissible bending moment when the composite bar is bent horizontally </u>
Given data :
modulus of elasticity of steel = 200 GPa
modulus of elasticity of aluminum = 75 GPa
Allowable stress for steel = 220 MPa
Allowable stress for Aluminum = 100 MPa
a = 10 mm
<em>First step </em>
determine moment of resistance when steel reaches its max permissible stress
<em>next </em>: determine moment of resistance when Aluminum reaches its max permissible stress
Finally Largest permissible bending moment of the composite Bar = 1.933 KN-M
<em>attached below is a detailed solution </em>
Answer:
D.telling your passengers where you are going
Answer:
The ALA, or Association of Licensed Architects. Hope this helps.
Explanation:
Answer:
The Space Needle is a cut away with minimal residual deflection due to load transfer.
Answer: heat flux into the fun is 21.714 mW/m^2
Explanation:
Heat flux Q = q/A
q = heat transfer rate W
A = area m^2
q = area * conductivity * temperature gradient
Temperature gradient = difference in temperature of the metal faces divided by the thickness.
Therefore Q = k * ( temp. gradient)
Q = 200 * ((400-20)/3.5*10^-2)
Q = 21714285.71 = 21.714 mW/m^2
Answer 2: convective heat transfer flux between fin and air
is 3800W/m^2
Explanation :
q = hA*(Ts-Ta)
h = convective heat transfer coefficient
Ts = temperature of fin
Ta = temperature of air
Q = q/A
Q = h(Ts-Ta)
Q = 10(400 - 20)
Q = 3800 W/m^2