Noble gases
Explanation:
Electronic configuration 1s² 2s² 2p⁶
The element belongs to the group of the noble gases.
- The noble gases have complete outer shell configuration of their atoms.
- we can infer that the configuration above is for an element in the p-block because the last sub-level filled is the p-orbital.
- The elements therefore belongs to the p-block
- The block is from group 111A to O
- Only the halogens and noble gases fits this picture from the option.
- The outer most p-subshell have three orbitals requiring 6 electrons to fill them up.
- This makes a complete and stable configuration.
- The highest energy level of 2 is also made up of 8 electrons, an octet.
- This is why we can conclude that they are noble gases.
Learn more:
Noble gas brainly.com/question/1781595
#learnwithBrainly
<h3>
Answer:</h3>
0.424 J/g °C
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Thermochemistry</u>
Specific Heat Formula: q = mcΔT
- q is heat (in Joules)
- m is mass (in grams)
- c is specific heat (in J/g °C)
- ΔT is change in temperature
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] m = 38.8 g
[Given] q = 181 J
[Given] ΔT = 36.0 °C - 25.0 °C = 11.0 °C
[Solve] c
<u>Step 2: Solve for Specific Heat</u>
- Substitute in variables [Specific Heat Formula]: 181 J = (38.8 g)c(11.0 °C)
- Multiply: 181 J = (426.8 g °C)c
- [Division Property of Equality] Isolate <em>c</em>: 0.424086 J/g °C = c
- Rewrite: c = 0.424086 J/g °C
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.424086 J/g °C ≈ 0.424 J/g °C
Answer:
Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO2). Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain.
Explanation:
Please give me brainlist
The major species in solution when solid ammonium bromate is dissolved in water is shown below
Answer:

Explanation:
We will need a balanced chemical equation with masses, moles, and molar masses.
1. Gather all the information in one place:
Mᵣ: 18.02
2Na + H₂O ⟶ 2NaOH + H₂
m/g: 72.0
2. Moles of H₂O

3. Moles of Na
The molar ratio is 2 mol Na/1 mol H₂O.
