Answer: The incident ray and the reflected ray and the normal will be parallel to each other.
Explanation:
The normal is perpendicular to the surface of the mirror or the reflective surface.
According to the law of reflection which state that:
The angle of incidence is always equal to the angle of reflection on a smooth surface.
If a light ray is incident on a reflective surface along the normal. The angle of incidence will be at 90 degrees which will be perpendicular to the surface of the mirror, the reflected ray will bounce back likewise at the same angle which will be perpendicular to the reflective surface.
Both the incident ray and the reflected ray and the normal will be parallel to each other.
<span>The runner is moving by uniformly accelerated motion, starting from rest (so, his initial velocity is zero). The law of motion of the runner is
</span>

<span>
where x(t) is the distance covered after time t, and a is the acceleration of the runner. By re-arranging the formula, we get
</span>

<span>
We know the runner has covered a distance of S=12m in t=4.0 s, and if we plug these numbers into the equation, we find the acceleration of the runner:
</span>

<span>
</span>
Answer:
A. The sum of all the forces acting on an object.
Explanation:
(a) We know that the acceleration of the car is given by :
a = change in speed / time taken
If the speed of the car is constant in a straight line, the acceleration of the car is zero because there is no change in the speed of the car.
(b) For the driver steer a car traveling at constant speed so that the magnitude of the acceleration remains constant, the driver should drive the car in the circular path. This is because, in circular path the speed of an object remains the same while its velocity changes.
Answer:
acc to formula= F= G m1m2/rsq
mass of Uranus= F×r sq/G×m
M=3.00×10^25×761.4×761.4×10^6/6.67×10^ -11×3.01×10^21
=3×10^25-8×7614×7614/667×301×10^-2-11+21-2
=173918988×10^11/200767
=866×10^11(approx)