Answer:
* most of the emission would be in the infrared part, the visible radiation would be very small.
*total intensity of the semition decreases that the intensity depends on the fourth power of the temperature
Explanation:
The radiation emitted by the Sun is approximately the radiation of a black body, if the Sun were to cool, the maximum emission wavelength changes
λ T = 2,898 10⁻³
λ = 2,898 10⁻³ / T
if the temperature decreases the maximum wavelength the greater values are moved, that is to say towards the infrared. Therefore the emission curve also moves, in this case most of the emission would be in the infrared part, the visible radiation would be very small.
Furthermore, the total intensity of the semition decreases that the intensity depends on the fourth power of the temperature according to Stefan's law
P = σ A eT⁴
Answer:
It will cause kinetic energy to increase.
Explanation:
Given that Speed and Motion you went from the starting line to the finish line at different rates.
If you repeated the activity while carrying weights but keeping your times the same, the weight carried will add up to the mass of the body.
And since Kinetic energy K.E = 1/2mv^2
Increase in the mass of the body will definitely make the kinetic energy of the body to increase.
Since the time is the same, that means the speed V is the same.
Weight W = mg
m = W/g
The new kinetic energy will be:
K.E = 1/2(M + m)v^2
This means that there will be increase in kinetic energy.
The oldest way ... the way we've been using as long as we've been
walking on the Earth ... has been to use plants. Plants sit out in the
sun all day, capturing its energy and using it to make chemical compounds.
Then we come along, cut the plants down, and eat them. Our bodies
rip the chemical compounds apart and suck the solar energy out of them,
and then we use the energy to walk around, sing, and play video games.
Another way to capture the sun's energy is to build a dam across a creek
or a river, so that the water can't flow past it. You see, it was the sun's
energy that evaporated the water from the ocean and lifted it high into
the sky, giving it a lot of potential energy. The rain falls on high ground,
up in the mountains, so the water still has most of that potential energy
as it drizzles down the river to the ocean. If we catch it on its way, we
can use some of that potential energy to turn wheels, grind our grain,
turn our hydroelectric turbines to get electrical energy ... all kinds of jobs.
A modern, recent new way to capture some of the sun's energy is to use
photovoltaic cells. Those are the flat blue things that you see on roofs
everywhere. When the sun shines on them, they convert some of its
energy into electrical energy. We use some of what they produce, and
we store the rest in giant batteries, to use when the sun is not there.
Answer:
(a) 0.345 T
(b) 0.389 T
Solution:
As per the question:
Hall emf, 
Magnetic Field, B = 0.10 T
Hall emf, 
Now,
Drift velocity, 

Now, the expression for the electric field is given by:
(1)
And

Thus eqn (1) becomes
where
d = distance
(2)
(a) When 

(b) When 
