Probably not what you were expecting... the average bottle of water is 24 ounces. 5 milliliters is about the amount of water in a spoon. Hope this helps!!!
Answer:
R (120) = 940Ω
Explanation:
The variation in resistance with temperature is linear in metals
ΔR (T) = R₀ α ΔT
where α is the coefficient of variation of resistance with temperature, in this case α = -0,0005 / ºC
let's calculate
ΔR = 1000 (-0,0005) (120-0)
ΔR = -60
Ω
ΔR = R (120) + R (0) = -60
R (120) = -60 + R (0)
R (120) = -60 + 1000
R (120) = 940Ω
Answer:
The items here are describing either a condition in a later interacton or a protogalactic cloud. The results matching with spiral and elliptical galaxy are:
For spiral galaxy are options 6,3,2 and 5.
and for elliptical galaxy are options 4 and 1.
Explanation:
Here it is given that astrnomers suspect that types of galaxy can be affected both by the conditions which occurs due to protogalactic cloud and then from it forms the initial conditions and then by the later interactions with the other galaxies.
so, both types of galaxies are matched with their respective items given:
A. Spiral galaxy:
2. A galaxy collision results tostripping of gas.
3. The protogalactic cloud rotates in a very slow motion.
5. The density of protogalactic cloud is very high.
6. when the protogalactic cloud shrinks cloud forms very rapidly.
B. Elliptical galaxy:
1. The protogalactic cloud has high angular momentum.
4. Most of the protogalactic gases settles down into a disk.
Answer:
The question is incomplete. However, I believe, it is asking for the acceleration of the elevator. This is 3.16 m/s².
Explanation:
By Hooke's law,
F is the force on a spring, k is the spring constant and e is the extension or compression.
From the question,
This is the force on the mass suspended on the spring. Its acceleration, a, is given by
This acceleration is more than the acceleration due to gravity, g = 9.8 m/s². Hence the elevator must be moving up with an acceleration of
12.96 - 9.8 m/s² = 3.16 m/s²
Answer:
(1) The orbits are ellipses, with focal points ƒ1 and ƒ2 for the first planet and ƒ1 and ƒ3 for the second planet. The Sun is placed in focal point ƒ1.
(2) The two shaded sectors A1 and A2 have the same surface area and the time for planet 1 to cover segment A1 is equal to the time to cover segment A2.
(3) The total orbit times for planet 1 and planet 2 have a ratio a13/2 : a23/2