the answer is C. light and heat
Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
Without any ionization, the element (Cn) would have 112 electrons because the atomic number of an element is the number of protons the element has and a neutral element has the same number of electrons as it does protons.
Answer:
HCl conc.= 6.0mol/L
Explanation:
From the dissociation of HCl= 1 mole H+ and 1mol Cl-, which is equivalent stoichiometrically in concentration to that of 1 mol HCl,
If I remember correctly, the answer is <span>Friction force.</span>