The answer to this question would be:C. 22mf
In this question, there are two capacitors that connected in parallel. The formula to count the capacitor is the opposite of the formula used for the resistor. If constructed in series, the capacitor will have reduced capacitance. For parallel condition the equation would be:
Ctotal= C1+C2
C total= 2 mf+ 20mf= 22mf
Explanation:
To determine whether something is living or nonliving, a living thing must meet seven specific characteristics: feeding, movement, respiration, excretion, growth, sensitivity, and reproduction. A living organism needs to be able to feed to make energy and grow.
Please allow me to know if I helped with a thank you, rating or brainly.
Miss Hawaii
<em>Class I .</em> . .
The fulcrum is between the effort and the load.
The mechanical advantage may be any positive number, more or less than ' 1 '.
<em>Class II .</em> . .
The load is between the fulcrum and the effort.
The mechanical advantage is always greater than ' 1 '.
<em>Class III .</em> . .
The effort is between the fulcrum and the load.
The mechanical advantage is always less than ' 1 '.
The kinetic energy of an object is directly proportional to its mass, and to the square of its velocity.
There simple rules for series and parallel circuits.
For the series circuits we have the following rules:
1)The same current flows through each part of a series circuit.(<span>I = I1 = I2 = I3)
2)</span>The total resistance of a series circuit is equal to the sum of individual resistances.(<span>Req = R1 + R2 + R3)
3)The</span> voltage applied to a series circuit is equal to the sum of the individual voltage drops.(<span>V = V1 + V2 + V3)
</span>For the parallel circuits we have the following rules:
1)Voltage is the same across each component of the parallel circuit.(<span>: V = V1 = V2 = V3)
</span>2)The sum of the currents through each path is equal to the total current that flows from the source.(<span> I = I1 + I2 + I3)
3)The total resistance is equal to the sum of the reciprocal value of individual resistors in the circuit.
The x region represents the series circuit. The y region represents a combination of series and parallel circuit. This means that for y region we can apply laws for both series and parallel circuits.
So, all the equation can be applied to the y region.
However, not all equation can be applied to the x region. We can apply following equation to the x region:
1)</span><span>I = I1 = I2 = I3
</span>2)<span> V = V1 + V2 + V3
3)</span><span>Req = R1 + R2 + R3</span>