The pressure drop in pascal is 3.824*10^4 Pascals.
To find the answer, we need to know about the Poiseuille's formula.
<h3>How to find the pressure drop in pascal?</h3>
- We have the Poiseuille's formula,

- where, Q is the rate of flow, P is the pressure drop, r is the radius of the pipe, is the coefficient of viscosity (0.95Pas-s for Glycerin) and l being the length of the tube.
- By substituting values and rearranging we will get the pressure drop as,

Thus, we can conclude that, the pressure drop in pascal is 3.824*10^4.
Learn more about the Poiseuille's formula here:
brainly.com/question/13180459
#SPJ4
Answer:

Explanation:
Light rays coming from moon is blocked by the pencil
so as per figure we know that angle subtended by pencil and angle subtended by moon must be same
so we have

so we have

so we have

Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired
Answer:
the answer is A: voluntary reflexes
Explanation:
because Alcohol poisoning can effect the brain which voluntary is something in the brain