Answer:
The total pressure is 27.8 atm
Explanation:
From the ideal gas equation,
PV = nRT
P (total pressure) = nRT/V
n (total moles of gases) = (6/1 moles of hydrogen) + (15.2/14 moles of nitrogen) + (16.8/4 moles of helium) = 6+1.1+4.2 = 11.3 moles
R = 0.082057L.atm/gmol.K, T = 27°C = 27+273K = 300K, V = 10L
P = 11.3×0.082057×300/10 = 27.8 atm
Answer:
pH= 3.82
Explanation:
Sodium ethanoate or sodium acetate (CH3COONa) ionises completely.
Ethanoic acid or acetic acid (CH3COOH), ionises partially because it is a weak acid.
Answer : The final pressure will be, 666.2 mmHg
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

where,
= initial pressure = 790 mmHg
= final pressure = ?
= initial volume = 101.2 mL
= final volume = 120 mL
Now put all the given values in the above equation, we get:


Therefore, the final pressure will be, 666.2 mmHg
Answer:
A. 4-ethyl-hex-3,5-dien-2-ol.
B. 2-chloro-3-methyl-5-<em>tert</em>-butylphenol.
Explanation:
Hello there!
In this case, according to the given problems, it is possible to apply the IUPAC rules to obtain the following names:
A. 4-ethyl-hex-3,5-dien-2-ol because we have an ethyl radical at the fourth carbon and the beginning of the parent chain is on the Me (CH3) because it is closest to first OH.
B. 2-chloro-3-methyl-5-<em>tert</em>-butylphenol: because we start at the alcohol and have a chlorine atom on the second carbon, a methyl radical on the third carbon, a <em>tert</em>-butyl on the fifth carbon and the parent chain is benzene which is phenol as an alcohol.
Regards!
Answer:

Explanation:
We want to convert from moles to grams, so we must use the molar mass.
<h3>1. Molar Mass</h3>
The molar mass is the mass of 1 mole of a substance. It is the same as the atomic masses on the Periodic Table, but the units are grams per mole (g/mol) instead of atomic mass units (amu).
We are given the compound PI₃ or phosphorus triiodide. Look up the molar masses of the individual elements.
- Phosphorus (P): 30.973762 g/mol
- Iodine (I): 126.9045 g/mol
Note that there is a subscript of 3 after the I in the formula. This means there are 3 moles of iodine in 1 mole of the compound PI₃. We should multiply iodine's molar mass by 3, then add phosphorus's molar mass.
- I₃: 126.9045 * 3=380.7135 g/mol
- PI₃: 30.973762 + 380.7135 = 411.687262 g/mol
<h3>2. Convert Moles to Grams</h3>
Use the molar mass as a ratio.

We want to convert 3.14 moles to grams, so we multiply by that value.

The units of moles of PI₃ cancel.


<h3>3. Round</h3>
The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we calculated, that is the tens place.
The 2 in the ones place tells us to leave the 9.

3.14 moles of phosphorous triiodide is approximately equal to <u>1290 grams of phosphorus triodide.</u>