The most likely bond between element X and Iodine would be an ionic, or electrovalent, bond. Iodine has seven electrons in its outer shell, also known as the valence shell. To become perfectly stable, it needs only a single electron from another element. Hence no sharing of electron takes place (usually), which is the condition required for it to be covalent bonding. Hence it's most likely an ionic bonding/
Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.
Molar mass of NH_3



We know.
No of moles=Given mass/Molar mass


Now
Lets write the balanced equation

- There is 2moles of Ammonia
- 3moles of H_2
- 1mole of N_2
Now

For Hydrogen



For Ammonia



For Nitrogen


Sodium is a member of the alkali metal family with potassium (K) and Lithium (LI) sodium's big claim to fame is that it's one or two elements in your table salt. when bonded to chlorine (CI) THE two elements make sodium chloride
For every, 3 Br- ions, 1 Al3+ ion reacts to form AlBr3.
Convert 16.2g of aluminum to moles:
16.2g Al / 27.0g per mol = 0.60 mols.
Based on the above ratio, 0.60 mols of Al will react with 1.8 mols of Br.
Convert 1.8 mols of Br to its mass:
1.8 mols Br × 79.9g per mol = 143.82g of Br.