Answer:
.........................................................
Explanation:
Answer:
five half lives
Explanation:
Half-life is the time required for a quantity to reduce to half of its initial value.
How many half lives it would take to reach 3.13% form 100% of it's initial concentration:
100% - 50% : First Half life
50% - 25%: Second Half life
25% - 12.5%: Third Half life
12.5% - 6.25%: Fourth Half life
6.25% - 3.125%: Fifth Half life
This means it would take five half lives to get to 3.125% (≈ 3.13%) of it's original concentration.
Answer:
2-3-1-4
Explanation:
The astronomer Nicolaus Copernicus did not have a theory about the Earth revolving around the sun until he got into astronomy and began to study the patterns of the sun and the moon as well as reading other entries from previous astronomers. You can pretty much guess from there, he had to have the theory before proving it etc.
<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>
When two gases of a chemical reaction are at the same temperature, pressure and molar volume, then the stoichiometric ratio of the gases would be 1 is to 1. Molar volume is the volume of the gas per mole of the gas. Having the same conditions for both gases would mean that they are present with the same number of moles.