Answer: Charles's law, Avogadro's law andd Boyle's law.
Charles law states the constant ratio of volume to temperature, at constant pressure. Boyle's law states the constat product of pressure and volumen at constant temperature. Avogadro's law states that equal volumes of gases at the same temperature and pressure have equal number of particles.
So, all those three laws combined state the relation of pressure, volume, temperature and number of particles of a gas, which is what the ideal gas law does: PV = n RT.
Answer:
140 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 3 atm
- Initial temperature of the gas (T₁): 280 K
- Final pressure of the gas (P₂): 1.5 atm
- Final temperature of the gas (T₂): ?
Step 2: Calculate the final temperature of the gas
We have a gas whose pressure is reduced. If we assume an ideal behavior, we can calculate the final temperature of the gas using Gay-Lussac's law.
T₁/P₁ = T₂/P₂
T₂ = T₁ × P₂/P₁
T₂ = 280 K × 1.5 atm/3 atm = 140 K
Note that it says oxygen "gas"
So you need the atomic mass of oxygen gas
Look at your periodic table, you'll see 15.9994 under oxygen
Oxygen gas has a formula of O2 therefore,
(15.9994) times 2= Oxygen gas atomic mass=31.9988
Mol= Mass/Atomic Mass
=62.3 g/ 31.9988 g/mol = 1.95 mol
now look at the ratio of C2H6 and O2, notice there is an invisible number beside each of them, at that "invisible number" is =1
1 C2H6 + 1 O2 -> products
this means that for 1 mol of C2H6, 1 mol of O2 has to react with it
Thus as we have 1.95 moles of O2, we need 1.95 moles of C2H6
V₁ = initial Volume of the balloon after it is blown up = 365 L
V₂ = new Volume of the balloon after it is taken outside = ?
T₁ = initial temperature of the balloon = 283 K
T₂ = new temperature of the balloon = 300 K
using the equation
V₁/V₂ = T₁/T₂
365/V₂ = 283/300
V₂ = 387 L
Answer:
depending on how you change the angle on the ramp the kanetic energy can go up or down depending on how u angle the ramp
Explanation: