Answer:
D if I'm incorrect then sorry.
Explanation:
"If air in a pump is squeezed more, then the air gets hotter because energy is added to it" is a good hypothesis that could lead to new experimentation.
<u>Option: C</u>
<u>Explanation:</u>
If we use a pump to inflate a basketball, we initially pull the handle to draw air to fill the sphere in. As we move it down we apply a great deal of force to pump in air through the pin's tiny hole because of this resistance force in the air we find the tube warmed.
A needle of ball pump is a metal tube in which air, from an inflating pump to a sports ball, moves through it. In continuous-flow operation, pumps are often used and built to produce comparatively little pressure towards a free-flowing environment with limited back pressure. Such pumps have a fixed configuration and work freely along their power curve as circumstances change.
F = G m1*m2 / r^2 => [G] = [F]*[r]^2 /([m1]*[m2]) = N * m^2 / kg^2
That is one answer.
Also, you can use the fact that N = kg*m/s^2
[G] = kg * m / s^2 * m^2 / kg^2 = m^3 /(s^2 * kg)
<span>In order for the results to be valid, the dependent variable can only be affected by the independent variable, so somethings need to be kept constant. The things that need to be kept constant are called controlled variables.</span>