In order to answer this question, the units of volume must be consistent. In this problem, we decide the unit m3 to be uniform. Option A is equal to 12 m3, option b is equal to 1.2x10^8/100^3 or 120 m3. Option C is 2.0 x10^4/ 10^3 or 20 m3. Option D is 1.2x10^8/ 1000^3 or 0.12 m3. The greatest volume is option b. 120 m3.
Positive ions are formed by atoms or molecules suffering an inelastic collision with an energetic electron in which an electron is lost from the atom or molecule (electron impact ionization). The degree of ionization of the plasma depends strongly on the electron density and energy distribution in the gas.
We can use the ideal gas law equation to find the pressure
PV = nRTwhere
P - pressure
V - volume - 2.6 x 10⁻³ m³
n - number of moles - 0.44 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 25 °C + 273 = 298 K
substituting the values into the equation,
P x 2.6 x 10⁻³ m³ = 0.44 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
P = 419 281.41 Pa
101 325 Pa is equivalent to 1 atm
Therefore 419 281.41 Pa - 1/ 101 325 x 419 281.41 = 4.13 atm
Pressure is 4.13 atm
Answer:
Any element
Explanation:
Any element that produces an extra proton, aka a Hydrogen cation, or H⁺
Answer:
- rows and columns
- period
- atomic orbitals
4.similar properties
5.electrons are very reactive