Answer:
emf = 15 * Area and if A is given in square meters, the units of the emf will be Volts
Explanation:
Assuming that the area of the loop of current (A) is known, the magnitude of the induced emf can be calculated using Faraday-Lenz's Law:

and if the area (A) is given in square meters, the emf will directly come in units of Volts.
Answer:
= 14.88 N
Explanation:
Let's begin by listing out the given variables:
M = 2.7 kg, L = 3 m, m = 1.35 kg, d = 0.6 m,
g = 9.8 m/s²
At equilibrium, the sum of all external torque acting on an object equals zero
τ(net) = 0
Taking moment about
we have:
(M + m) g * 0.5L -
(L - d) = 0
⇒
= [(M + m) g * 0.5L] ÷ (L - d)
= [(2.7 + 1.35) * 9.8 * 0.5(3)] ÷ (3 - 0.6)
= 59.535 ÷ 2.4
= 24.80625 N ≈ 24.81 N
Weight of bar(W) = M * g = 2.7 * 9.8 = 26.46 N
Weight of monkey(w) = m * g = 1.35 * 9.8 = 13.23 N
Using sum of equilibrium in the vertical direction, we have:
+
= W + w ------- Eqn 1
Substituting T2, W & w into the Eqn 1
+ 24.81 = 26.46 + 13.23
= <u>14.88</u> N
Answer:
According to studies, the milky way is approximately, "170,000–200,000 light-years (52–61 kpc) in diameter and, on average, approximately 1,000 ly (0.3 kpc) thick."
With that being said, it is safe to say that the dimensions are somewhere around 100,000 by 1,000
Answer:
If you hold the temperature of an ideal gas constant, what happens to its volume when you triple the pressure? For T fixed, P is proportional to 1/V or V is proportional to 1/P. Tripling P reduces V to 1/3. ... If T is constant, the speeds of the average speeds and kinetic energy of the atomic particles remain constant.
I hope this helps!