Answer:
change in internal energy 3.62*10^5 J kg^{-1}
change in enthalapy 5.07*10^5 J kg^{-1}
change in entropy 382.79 J kg^{-1} K^{-1}
Explanation:
adiabatic constant 
specific heat is given as 
gas constant =287 J⋅kg−1⋅K−1

specific heat at constant volume

change in internal energy 

change in enthalapy 

change in entropy



Answer:
35 kg
Explanation:
From the question,
Momentum (I) = mass (m) × velocity (v)
I = m×v................... Equation 1
Where m = mass, v = velocity
make m the subject of the equation
m = I/v.................... Equation 2
Given: I = 140 kgm/s, v = 4 m/s
Substitute these values into equation 2
m = 140/4
m = 35 kg
Hence the mass of the dart is 35 kg
As we know that electrostatic force between two charges is given as

here we know that electrostatic repulsion force is balanced by the gravitational force between them
so here force of attraction due to gravitation is given as

here we can assume that both will have equal charge of magnitude "q"
now we have



now we have

Answer:
For an atom to become totally stable, it needs to have a full outer shell. To do this, two or more atoms will share or give away electrons to each other in a process called bonding.
Explanation:
When an atom loses or gains an electron, it becomes an ion. If it gains an electron, it's a cation, and if it loses one, it's an anion. This happens most commonly in chemical reactions, in which atoms share electrons to form a stable outer shell of 8. For example, the water molecule consists of two hydrogen atoms and an oxygen atom.
Answer:
The coefficient of rolling friction will be "0.011".
Explanation:
The given values are:
Initial speed,

then,


Distance,
s = 18.2 m
The acceleration of a bicycle will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
⇒ 
As we know,
⇒ 
and,
⇒ 
⇒ 
On substituting the values, we get
⇒ 
⇒ 