Hello! The correct answer is, B. are in motion outside the nucleus.
I hope this helped!
We are given with the total mass of fertilizer which is 14.1 oz. This is equivalent to 399.73 grams. 15% of the total is the amount of nitrogen. Thus, the nitrogen amount is 59.96 grams.
Because I'm the warm it melts in the cold it's frozen
MgCl2 because it is the only option in which a metal appears with a nonmetal. In this case, the metal transfers electrons to the nonmental because the metal has a lower ionization energy.
Answer:
Part A is just T2 = 58.3 K
Part B ∆U = 10967.6 x C
You can work out C
Part C
Part D
Part E
Part F
Explanation:
P = n (RT/V)
V = (nR/P) T
P1V1 = P2V2
P1/T1 = P2/T2
V1/T1 = V2/T2
P = Pressure(atm)
n = Moles
T = Temperature(K)
V = Volume(L)
R = 8.314 Joule or 0.08206 L·atm·mol−1·K−1.
bar = 0.986923 atm
N = 14g/mol
N2 Molar Mass 28g
n = 3.5 mol N2
T1 = 350K
P1 = 1.5 bar = 1.4803845 atm
P2 = 0.25 bar = 0.24673075 atm
Heat Capacity at Constant Volume
Q = nCVΔT
Polyatomic gas: CV = 3R
P = n (RT/V)
0.986923 atm x 1.5 = 3.5 mol x ((0.08206 L atm mol -1 K-1 x 350 K) / V))
V = (nR/P) T
V = ((3.5 mol x 0.08206 L atm mol -1 K-1)/(1.5 x 0.986923 atm) )x 350K
V = (0.28721/1.4803845) x 350
V = 0.194 x 350
V = 67.9036 L
So V1 = 67.9036 L
P1V1 = P2V2
1.4803845 atm x 67.9036 L = 0.24673075 x V2
100.52343693 = 0.24673075 x V2
V2 = P1V1/P2
V2 = 100.52343693/0.24673075
V2 = 407.4216 L
P1/T1 = P2/T2
1.4803845 atm / 350 K = 0.24673075 atm / T2
0.00422967 = 0.24673075 /T2
T2 = 0.24673075/0.00422967
T2 = 58.3 K
∆U= nC
∆T
Polyatomic gas: C
= 3R
∆U= nC
∆T
∆U= 28g x C
x (350K - 58.3K)
∆U = 28C
x 291.7
∆U = 10967.6 x C