Kiloliters and megaliters
Pure water may be identified by its density: it will have the lowwest density of the three solutions, given that the solutes (salt and sugar) increase the density (this is the easiests and quickest way).
You can also measure the freezing points or boling points to identify the pure water because the solutes depress the freezing points and increase the boling points.
To differentiate sugar water and salt water, you can probe which one conducts electricity, because salt water is a conductor (given that it ionizes into Na+ and Cl-) but sugar water is not a conductor.
what grade is this because apparently i like to know what grade it is before i solve it
pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
How does the law of conservation of mass apply to this reaction: C2H4 + O2 → H2O + CO2?