Answer: B: 20-degree incline
Explanation:
A tractor user should avoid slopes of more than 20 degrees in order to avoid rollovers
Answer:
screw is the answer of the question
Answer:
V1=5<u>ft3</u>
<u>V2=2ft3</u>
n=1.377
Explanation:
PART A:
the volume of each state is obtained by multiplying the mass by the specific volume in each state
V=volume
v=especific volume
m=mass
V=mv
state 1
V1=m.v1
V1=4lb*1.25ft3/lb=5<u>ft3</u>
state 2
V2=m.v2
V2=4lb*0.5ft3/lb= <u> 2ft3</u>
PART B:
since the PV ^ n is constant we can equal the equations of state 1 and state 2
P1V1^n=P2V2^n
P1/P2=(V2/V1)^n
ln(P1/P2)=n . ln (V2/V1)
n=ln(P1/P2)/ ln (V2/V1)
n=ln(15/53)/ ln (2/5)
n=1.377
Answer:
5.833
Explanation:
Coefficient of Perfomance (COP) is the ratio of refrigeration effect to power input.
where RE is refrigeration effect and P is power input
Here, the power input is given as 30 kW
We also know that 1 ton cooling is equivalent to 3.5 kW hence for 50 tons, RE=50*3.5=175 kW
Now the 
Answer:
heat loss per 1-m length of this insulation is 4368.145 W
Explanation:
given data
inside radius r1 = 6 cm
outside radius r2 = 8 cm
thermal conductivity k = 0.5 W/m°C
inside temperature t1 = 430°C
outside temperature t2 = 30°C
to find out
Determine the heat loss per 1-m length of this insulation
solution
we know thermal resistance formula for cylinder that is express as
Rth =
.................1
here r1 is inside radius and r2 is outside radius L is length and k is thermal conductivity
so
heat loss is change in temperature divide thermal resistance
Q = 
Q = 
Q = 4368.145 W
so heat loss per 1-m length of this insulation is 4368.145 W