Answer:
If you are laying down then nee them in the X.
If you are standing up you gan take them by surprise and give them a hook punch.
Explanation:
Self defenc is very important.
In order to determine the angle of the refracted ray, we may apply Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is constant for a given wave when it passes through two different media. Mathematically, this is:
n₁sin(∅₁) = n₂sin(∅₂)
Where n is the refractive index. Substituting the values given into the equation:
1.0003 * sin(20°) = 1.33 * sin(∅)
∅ = 14.91
The angle of the refracted ray is 15°.
Answer:
v₀ = 13.9 10³ m / s
Explanation:
Let's analyze this exercise we can use the basic kinematics relationships to love the initial velocity and the acceleration we can look for from Newton's second law where force is gravitational attraction.
F = m a
G m M / x² = m dv / dt = m dv/dx dx/dt
G M / x² = dv/dx v
GM dx / x² = v dv
We integrate
v² / 2 = GM (-1 / x)
We evaluate between the lower limits where x = Re = 6.37 10⁶m and the velocity v = vo and the upper limit x = 2.50 10⁸m with a velocity of v = 8.50 10³ m/s
½ ((8.5 10³)² - v₀²) = GM (-1 /(2.50 10⁸) + 1 / (6.37 10⁶))
72.25 10⁶ - v₀² = 2 G M (+0.4 10⁻⁸ - 1.57 10⁻⁷)
72.25 10⁶ - v₀² = 2 6.63 10⁻¹¹ 5.98 10²⁴ (-15.3 10⁻⁸)
72.25 10⁶ - v₀² = -1.213 10⁸
v₀² = 72.25 10⁶ + 1,213 10⁸
v₀² = 193.6 10⁶
v₀ = 13.9 10³ m / s
Explanation:
Types of light microscope
1. Compound , and 2. Stereo Microscope
Compound microscope has two lens system also called compound lens system. The objective lens and the eyepiece lens. The magnification provided by the objective lens is compounded by the eyepiece lens, the a higher magnification is observed.