Answer:
Both roots are imaginary roots.
Explanation:
Consider these things:
If we try to solve x²+1 = 0, notice that we aren't able to solve the equation in Real Number system because there are no negative outputs for quadratic function.
Remember that quadratic function has range greater or equal to the max-min value.
x-axis plane represents the solutions of that equation. If a graph intersects x-axis plane then it has a solution.
While a graph that doesn't have any intersects on x-plane, it means that the equation for that graph doesn't have real solutions but imaginary solutions.
As you may notice some of parabola graph has one intersect, two intersects or none. One intersect is one solution to the equation — Two intersects are two solutions of the equation and lastly, no intersects mean that no real solutions and remain only imaginary solution.
The most appropriate answer is C !!
Answer:
Part A is just T2 = 58.3 K
Part B ∆U = 10967.6 x C
You can work out C
Part C
Part D
Part E
Part F
Explanation:
P = n (RT/V)
V = (nR/P) T
P1V1 = P2V2
P1/T1 = P2/T2
V1/T1 = V2/T2
P = Pressure(atm)
n = Moles
T = Temperature(K)
V = Volume(L)
R = 8.314 Joule or 0.08206 L·atm·mol−1·K−1.
bar = 0.986923 atm
N = 14g/mol
N2 Molar Mass 28g
n = 3.5 mol N2
T1 = 350K
P1 = 1.5 bar = 1.4803845 atm
P2 = 0.25 bar = 0.24673075 atm
Heat Capacity at Constant Volume
Q = nCVΔT
Polyatomic gas: CV = 3R
P = n (RT/V)
0.986923 atm x 1.5 = 3.5 mol x ((0.08206 L atm mol -1 K-1 x 350 K) / V))
V = (nR/P) T
V = ((3.5 mol x 0.08206 L atm mol -1 K-1)/(1.5 x 0.986923 atm) )x 350K
V = (0.28721/1.4803845) x 350
V = 0.194 x 350
V = 67.9036 L
So V1 = 67.9036 L
P1V1 = P2V2
1.4803845 atm x 67.9036 L = 0.24673075 x V2
100.52343693 = 0.24673075 x V2
V2 = P1V1/P2
V2 = 100.52343693/0.24673075
V2 = 407.4216 L
P1/T1 = P2/T2
1.4803845 atm / 350 K = 0.24673075 atm / T2
0.00422967 = 0.24673075 /T2
T2 = 0.24673075/0.00422967
T2 = 58.3 K
∆U= nC
∆T
Polyatomic gas: C
= 3R
∆U= nC
∆T
∆U= 28g x C
x (350K - 58.3K)
∆U = 28C
x 291.7
∆U = 10967.6 x C
All elements are pure substances.
A compound accepts electrons from another substance to form a covalent bond. The compound acts as a Lewis base.
<h3>What are the most common acid-base theories?</h3>
- Arrhenius: acids release H⁺ and bases release OH⁻.
- Bronsted-Lowry: acids donate H⁺ and bases accept H⁺.
- Lewis: acids accept electrons and bases donate electrons.
A compound accepts electrons from another substance to form a covalent bond. Which term best describes this compound’s behavior?
- Lewis acid. YES.
- Arrhenius base. NO, because OH⁻ is not involved.
- Bronsted-Lowry acid. NO, because H⁺ is not involved.
- Bronsted-Lowry base. NO, because H⁺ is not involved.
A compound accepts electrons from another substance to form a covalent bond. The compound acts as a Lewis base.
Learn more about Lewis acid-base theory here: brainly.com/question/7031920