1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sav [38]
3 years ago
12

In a stunt, three people jump off a platform and fall 8.5 m onto a large air bag. A fourth person at the other end of the air ba

g, the "flier," is launched 16 m vertically into the air. Assume all four people have a mass of 74 kg. What is the momentum of the flier just after launch? Let upward be the positive direction.
Physics
1 answer:
docker41 [41]3 years ago
8 0

Answer:

They Died Period NO MORE

You might be interested in
A tree falls in a forest. How many years must pass before the 14C activity in 1.03 g of the tree's carbon drops to 1.02 decay pe
Illusion [34]

Answer:

t = 5.59x10⁴ y

Explanation:

To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:

A_{t} = A_{0}\cdot e^{- \lambda t}    (1)

<em>where A_{t}: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>

To find A₀ we can use the following equation:  

A_{0} = N_{0} \lambda   (2)

<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>

From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:        

N_{0} = \frac{m_{T} \cdot N_{A} \cdot abundance}{m_{^{12}C}}

<em>where m_{T}: is the tree's carbon mass, N_{A}: is the Avogadro's number and m_{^{12}C}: is the ¹²C mass.  </em>

N_{0} = \frac{1.03g \cdot 6.022\cdot 10^{23} \cdot 1.3\cdot 10^{-12}}{12} = 6.72 \cdot 10^{10} atoms ^{14}C    

Similarly, from equation (2) λ is:

\lambda = \frac{Ln(2)}{t_{1/2}}

<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

\lambda = \frac{Ln(2)}{5700y} = 1.22 \cdot 10^{-4} y^{-1}

So, the initial activity A₀ is:  

A_{0} = 6.72 \cdot 10^{10} \cdot 1.22 \cdot 10^{-4} = 8.20 \cdot 10^{6} decays/y    

Finally, we can calculate the time from equation (1):

t = - \frac{Ln(A_{t}/A_{0})}{\lambda} = - \frac {Ln(\frac{1.02decays \cdot 24h \cdot 365d}{1h\cdot 1d \cdot 1y \cdot 8.20 \cdot 10^{6} decays/y})}{1.22 \cdot 10^{-4} y^{-1}} = 5.59 \cdot 10^{4} y              

I hope it helps you!

4 0
2 years ago
A small object with a 5.0-mC charge is accelerating horizontally on a friction-free surface at 0.0050 m/s2 due only to an electr
kolbaska11 [484]

Answer:

0.002 N/C

Explanation:

Parameters given:

Charge of object, q = 5 mC = 5 * 10^{-3} C

Acceleration of object, a = 0.005 m/s^2

Mass of object, m = 2.0 g

The Electric field exerts a particular force on the object, causing it to accelerate (Electrostatic force).

We know that Electrostatic force, F, is given in terms of Electric field, E, as:

F = qE

This means that the object exerts a force of -qE on the Electric force (Action with equal and opposite reaction).

The object also has a force, F, due to its acceleration a. This force is the product of its mass and acceleration. Mathematically:

F = ma

Equating the two forces of the object, we get:

-qE = ma

=> E = \frac{-ma}{q}

Solving for E, we have:

E = \frac{-2 * 10^{-3} * 0.005}{5 * 10^{-3}} \\\\\\E = -0.002 N/C

The magnitude will be:

|E| = |-0.002| N/C = 0.002 N/C

The electric field has a magnitude of 0.002 N/C.

4 0
3 years ago
Which era is where dinosaurs came
vodka [1.7K]
The era that dinosaurs came was in the Mesozoic Era!
7 0
3 years ago
Read 2 more answers
In a science museum, a 140 kg brass pendulum bob swings at the end of a 16.8 m -long wire.
Mice21 [21]

The period of the pendulum is 8.2 s

Explanation:

The period of a simple pendulum is given by the equation:

T=2\pi \sqrt{\frac{L}{g}}

where

L is the length of the pendulum

g is the acceleration of gravity

T is the period

We notice that the period of a pendulum does not depend at all on its mass, but only on its length.

For the pendulum in this problem, we have

L = 16.8 m

and

g=9.8 m/s^2 (acceleration of gravity)

Therefore the period of this pendulum is

T=2\pi \sqrt{\frac{16.8}{9.8}}=8.2 s

#LearnWithBrainly

3 0
3 years ago
A Meteorite Strikes On October 9, 1992, a 27-pound meteorite struck a car in Peekskill, NY, leaving a dent 22 cm deep in the tru
vagabundo [1.1K]

Answer:

Acceleration of the meteorite, a=-38409.09\ m/s^2

Explanation:

It is given that,

A Meteorite after striking struck a car, v = 0

Initial speed of the Meteorite, u = 130 m/s

Distance covered by Meteorite, s = 22 cm = 0.22 m

We need to find the magnitude of its deceleration. It can be calculated using the third equation of motion as :

a=\dfrac{v^2-u^2}{2s}

a=\dfrac{-(130)^2}{2\times 0.22}

a=-38409.09\ m/s^2

So, the deceleration of the Meteorite is -38409.09\ m/s^2. Hence, this is the required solution.

7 0
2 years ago
Other questions:
  • You are driving at 90 km/h. How many meters are you covering per second?
    12·1 answer
  • A penguin slides at a constant velocity of 3.57 m/s down an icy incline. The incline slopes above the horizontal at an angle of
    10·1 answer
  • A basketball center holds a basketball straight out, 2.0 m above the floor, and releases it. It bounces off the floor and rises
    12·1 answer
  • Which of the following would not make a good insulator
    13·1 answer
  • Dolphins communicate using compression waves (longitudinal waves). Some of the sounds dolphins make are outside the range of hum
    6·1 answer
  • Pls help me pls I’ll be glad
    11·1 answer
  • Ocean waves are hitting a beach at a rate of 3.5 Hz. What is the period of the waves?
    7·1 answer
  • Which material produces static charge when rubbed?
    13·1 answer
  • &lt;
    14·1 answer
  • A machine has a mechanical advantage of 0.6. what force should be applied to the machine to make it apply 600 n to an object? 10
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!