a) To find the mass after t years:we will use this formula:
A = Ao / 2^n when A =the amount remaining
and Ao = the initial amount
and n = t / t(1/2)
by substitution:
∴ A = 200 mg/ 2^(t/30y)b) Mass after 90 y :by using the previous formula and substitute t by 90 y
A = 200mg/ 2^(90y/30y)
∴ A = 25 mgC) Time for 1 mg remaining:when A= Ao/ 2^(t/t(1/2)
so, by substitution:
1 mg = 200 mg / 2^(t/30y)
∴2^(t/30y) = 200 mg by solving for t
∴ t = 229 y
Answer:
The total amount of heat released is 68.7 kJ
Explanation:
Given that:
mass of water = 94.0 g
moles of water = 94 / 18.02 = 5.216
80⁰C ------> 0⁰C --------> -30⁰C
Q1 = m Cp dT
= 94 x 4.184 x (0 - 80)
= -31463.68 J
= -31.43 kJ
Q2 = 6.01 x 10^3 x 5.216
= - 31348.16 J
= -31.35 kJ
Q3 = - 94 x 2.09 x 30
= - 5893.8 J
= -5.894 kJ
Total heat = Q1 + Q2 + Q3 = -31.43 kJ + (-31.35 kJ ) + (-5.894 kJ
) = -68.7 kJ
Total heat released = -68.7 kJ
Note that the "negative sign" simply indicates heat released, therefore no need to put it in the answer.
Answer:
Butanoic acid and 2-propanol reacts to form isopropyl butyrate.
Explanation:
brainliest plz
10 atoms. If there are 10 in the reactants you need the same number in the products