Explanation:
The liquid contains only one element. -The liquid is a pure substance. The number at the end of an isotope's name is the -mass number. While looking at xenon (Xe) on the periodic table, a student needs to find an element with a smaller atomic mass in the same group.
Answer:
Distance is path length covered by particle. When particle moves along half circle, it covers half the circumference therefore distance covered is (2×pi×r)/2 = pi× r. ... Hence displacement is equal to diameter or 2 times the radius of circle.
The question involves a ping-pong ball that is held submerged in a bucket by a string attached to the bottom of the bucket.
The answer is the tension of the string will increase. This is because making the water salty increases its density, and consequently, increases its buoyancy. This is why sea water is more buoyant than fresh water. Therefore the ping pong is pushed more upwards by the water when salt is added than initially. This gives the string more tension.
Answer:
213 nA
2.13 mA
851e^-t μA
Explanation:
We have a pretty straightforward question here.
Ohms Law states that the current in an electric circuit is directly proportional to the voltage and inversely proportional to the resistance in the circuit. It is mathematically written as
V = IR, since we need I, we can write that
I = V/R
a) at V = 1 mV
I = (1 * 10^-3) / 4.7 * 10^3
I = 2.13 * 10^-7 A or 213 nA
b) at V = 10 V
I = 10 / 4.7 * 10^3
I = 0.00213 A or 2.13 mA
c) at V = 4e^-t
I = 4e^-t / 4.7 * 10^3
I = 0.000851e^-t A or 851e^-t μA
Answer:
-0.7 m/sec
Explanation:
Mass of first block = m1 =3.0 kg
Mass of second block = m2= 5.0 kg
Velocity of first block = V1= 1.2 m/s
Velocity of second block = V2 = ?
Momentum of Center of mass MVcom is sum of both blocks momentum and is given by
MVcom= m1v1+m2v2
Where
M= mass of center of mass
Vcom= Velocity of center of mass=0 m/s (because center of mass is at rest , so Vcom = 0 m.sec)
Putting values, we get;
0= 3×1.2+5v2
==> v2= 3.6/5= - 0.7 m/s
-ve sign indicates that block 2 is moving in opposite direction of block 1